
C:\Program Files\Adobe\FrameMaker8\UniData 7.2\7.2rebranded\DEBUGGER\BASBTITL.fm
March 8, 2010 10:30 am

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Beta Beta Beta Beta
UniData
Using the UniBasic
Debugger
UDT-720-UDEB-1

ii Using the UniBas

C:\Program Files\Adobe\FrameMaker8\UniData 7.2\7.2rebranded\DEBUGGER\BASBTITL.fm
March 8, 2010 10:30 am

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Notices

Edition
Publication date: July 2008
Book number: UDT-720-UDEB-1
Product version: UniData 7.2

Copyright
© Rocket Software, Inc. 1988-2008. All Rights Reserved.

Trademarks
The following trademarks appear in this publication:

Trademark Trademark Owner

Rocket Software™ Rocket Software, Inc.

Dynamic Connect® Rocket Software, Inc.

RedBack® Rocket Software, Inc.

SystemBuilder™ Rocket Software, Inc.

UniData® Rocket Software, Inc.

UniVerse™ Rocket Software, Inc.

U2™ Rocket Software, Inc.

U2.NET™ Rocket Software, Inc.

U2 Web Development Environment™ Rocket Software, Inc.

wIntegrate® Rocket Software, Inc.

Microsoft® .NET Microsoft Corporation

Microsoft® Office Excel®, Outlook®, Word Microsoft Corporation

Windows® Microsoft Corporation

Windows® 7 Microsoft Corporation

Windows Vista® Microsoft Corporation

Java™ and all Java-based trademarks and logos Sun Microsystems, Inc.

UNIX® X/Open Company Limited
ic Debugger

The above trademarks are property of the specified companies in the United States,
other countries, or both. All other products or services mentioned in this document
may be covered by the trademarks, service marks, or product names as designated
by the companies who own or market them.

License agreement
This software and the associated documentation are proprietary and confidential to
Rocket Software, Inc., are furnished under license, and may be used and copied only
in accordance with the terms of such license and with the inclusion of the copyright
notice. This software and any copies thereof may not be provided or otherwise made
available to any other person. No title to or ownership of the software and associated
documentation is hereby transferred. Any unauthorized use or reproduction of this
software or documentation may be subject to civil or criminal liability. The information
in the software and documentation is subject to change and should not be construed
as a commitment by Rocket Software, Inc.

Restricted rights notice for license to the U.S. Government: Use, reproduction, or
disclosure is subject to restrictions as stated in the “Rights in Technical Data-
General” clause (alternate III), in FAR section 52.222-14. All title and ownership in
this computer software remain with Rocket Software, Inc.

Note
This product may contain encryption technology. Many countries prohibit or restrict
the use, import, or export of encryption technologies, and current use, import, and
export regulations should be followed when exporting this product.

Please be aware: Any images or indications reflecting ownership or branding of the
product(s) documented herein may or may not reflect the current legal ownership of
the intellectual property rights associated with such product(s). All right and title to
the product(s) documented herein belong solely to Rocket Software, Inc. and its
subsidiaries, notwithstanding any notices (including screen captures) or any other
indications to the contrary.

Contact information
Rocket Software
275 Grove Street Suite 3-410
Newton, MA 02466-2272
USA
Tel: (617) 614-4321 Fax: (617) 630-7100
Web Site: www.rocketsoftware.com
Using the UniBasic Debugger iii

http://www.rocketsoftware.com
http://www.rocketsoftware.com

Table of Contents

:\Prog
March

Table of
Contents

 Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Chapter 1 Using the Debugger
In This Chapter . 1-4
Getting Started . 1-5

Locating the Source Code 1-5
Linking the Symbol Table 1-6
BASIC Options 1-7
Loading the Symbol Table 1-7
Displaying the Symbol Table 1-8
Invoking the Debugger 1-9
Getting Debugger Help. 1-11
Exiting from the Debugger 1-11

Displaying Program Code and Output. 1-12
Querying the Debugger 1-13
Printing and Changing Variables 1-14
Watching Variables Change 1-15
Using Breakpoints and Tracepoints 1-16

What Are Breakpoints?. 1-16
What Are Tracepoints? 1-16
What You Can Trace and Break On 1-16
Breakpoint and Tracepoint Commands 1-17
Examples . 1-17

Saving and Loading the Debug Environment 1-20
Accessing Data in Files 1-21

Debugger Open File Commands 1-21
Accessing a UniData File 1-21

Executing Programs from the Debugger 1-23
Accessing ECL and the Operating System 1-24

Colon . 1-24
EXEC Command 1-24
! (Bang) Command 1-25
ram Files\Adobe\FrameMaker8\UniData 7.2\7.2rebranded\DEBUGGER\BASBTOC.fm (bookTOC.template)
8 2010 10:26 am

v Using

C:\Program Files\Adobe\FrameMaker8\UniData 7.2\7.2rebranded\DEBUGGER\BASBTOC.fm
(bookTOC.template)

 Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Using Dual-Terminal Debugging 1-26
Initiating Dual-Terminal Debugging (UNIX) 1-26
Initiating Dual-Terminal Debugging (Windows Platforms) 1-29
Ending Dual-Terminal Debugging 1-32

Chapter 2 Debugger Commands Reference
Elements of Syntax Statements 2-5
Summary of Debugger Commands 2-6

Display Variables and Break to Debugger 2-6
Display and Change 2-7
Execute . 2-7
End . 2-8
External Execute 2-8
Open File. 2-9
Dual-Terminal Debugging 2-9
Utilities . 2-10

! . 2-11
$. 2-12
: . 2-13
? . 2-14
* . 2-15
\array . 2-16
\variable . 2-18
ABORT . 2-20
B . 2-21
BASIC . 2-24
BC . 2-27
BD . 2-28
BE . 2-29
BG . 2-31
BL . 2-33
BP . 2-35
BU . 2-36
D . 2-37
DEBUG. 2-39
DI. 2-40
DL . 2-41
E . 2-42
EL . 2-44
END . 2-45
ES . 2-46
 the UniBasic Debugger

vi Usin

C:\Program Files\Adobe\FrameMaker8\UniData 7.2\7.2rebranded\DEBUGGER\BASBTOC.fm
(bookTOC.template)

 Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
EXEC . 2-47
FI . 2-48
G . 2-49
H . 2-50
L . 2-51
LA . 2-53
LD . 2-54
LI . 2-55
LS . 2-56
LU . 2-57
N . 2-58
OUT . 2-60
P . 2-62
PG . 2-63
PL . 2-64
PP . 2-65
SF . 2-67
SL . 2-69
SO . 2-71
SS . 2-72
SZ . 2-74
T . 2-75
TC . 2-77
TD . 2-79
TE . 2-81
TG . 2-83
TL . 2-86
TP . 2-89
TU . 2-91
V . 2-92
W. 2-93
WC . 2-95
WD . 2-96
Z . 2-97
g the UniBasic Debugger

1
Chapter

Using the Debugger
In This Chapter 1-4
Getting Started 1-6
 Locating the Source Code 1-6
 Linking the Symbol Table 1-7
 BASIC Options 1-8
 Loading the Symbol Table 1-8
 Displaying the Symbol Table 1-9
 Invoking the Debugger 1-10
 Getting Debugger Help 1-12
 Exiting from the Debugger 1-13
Displaying Program Code and Output 1-14
Querying the Debugger 1-15
Printing and Changing Variables 1-16
Watching Variables Change 1-17
Using Breakpoints and Tracepoints 1-18
 What Are Breakpoints? 1-18
 What Are Tracepoints? 1-18
 What You Can Trace and Break On 1-18
 Breakpoint and Tracepoint Commands 1-19
 Examples . 1-20
Saving and Loading the Debug Environment 1-22
Accessing Data in Files. 1-23
 Debugger Open File Commands 1-23
 Accessing a UniData File. 1-23
Executing Programs from the Debugger 1-25
Accessing ECL and the Operating System 1-26
 Colon . 1-26

1-2 Usi
 EXEC Command 1-26
 ! (Bang) Command 1-27
Using Dual-Terminal Debugging 1-28
 Initiating Dual-Terminal Debugging (UNIX). 1-28
 Initiating Dual-Terminal Debugging (Windows Platforms) 1-31
 Ending Dual-Terminal Debugging 1-34
ng the UniBasic Debugger

You can use the UniBasic debugger to interactively examine the source code and the
value of variables. This chapter introduces the terms and concepts you need to begin
using the debugger. For the syntax of debugger commands, including descriptions
and examples, see Chapter 2, “Debugger Commands Reference.”
 1-3

In This Chapter
This chapter includes the following sections:

“Getting Started” – Prepare your program for a debugging session and learn
how to get in and out of the debugger.
“Displaying Program Code and Output” – Turn on and off display of the
following:

Each program line as it executes.
Program output.

“Querying the Debugger” – Get information about the program, files, select
lists, symbol table, servers, breakpoints, and tracepoints. You also can list a
program segment.
“Printing and Changing Variables” – Display and change variables, arrays,
array elements, and substrings.
“Watching Variables Change” – Use these commands for displaying
variables automatically when their values change.
“Using Breakpoints and Tracepoints” – Use these commands for controlling
program execution and monitoring variables.
“Saving and Loading the Debug Environment” – Save and load debug
environments, including breakpoints, tracepoints, and watches.
“Accessing Data in Files” – While in the debugger, open UniData files,
operating system files, and sequential files. You also can select records from
these files.
“Executing Programs from the Debugger” – Execute the program you are
debugging.
“Accessing ECL and the Operating System” – Execute ECL or operating
system commands while in the debugger.
“Accessing ECL and the Operating System” – Use separate terminals or
windows to:

Interact with the debugger and display code and values in variables.
Display program output.

“Using Dual-Terminal Debugging” – Use dual-terminal debugging to
enhance the debugging process by logging in to two terminals or by opening
two windows: one for the debugger, and the other for application output.
1-4 Using the UniBasic Debugger

Getting Started
This section explains how to prepare a program for debugging and get started with
the debugging session. It includes the following subsections:

“Locating the Source Code” – The source code must be in the same
directory as the executable to be accessible to the debugger. Use the
debugger S command to load the source code into the local directory.
“Linking the Symbol Table” – Make available the symbol table that is used
by the debugger.

Using the ECL BASIC command with debugging options.
Using the debugger EXEC command.

“Loading the Symbol Table” – Load the table with data from the program
by using the debugger Z command.
“Displaying the Symbol Table” – List the symbol table to see all variables
used in the program.
“Invoking the Debugger” – Start up the debugger by executing:

The ECL RUN command.
The program from the ECL prompt.

“Getting Debugger Help” – Enter H at the debugger prompt to get online
help.
“Exiting from the Debugger” – Enter ABORT or END to get out of the
debugger. You can program the ON.ABORT clause to control where users
are returned after exiting.

Locating the Source Code
The debugger requires that the source code be located in the same directory as the
executable file. If it is not, you will need to use the debugger S command to load
source code into the directory after you enter the debugger.

Syntax:

S {directory.name prog.name | pathname}

You can use either of the following types of command lines to execute the debugger
S command, assuming the program is located in the BP directory:
 Getting Started 1-5

!S /path/BP/TEST (for UNIX), or !S C:\path\BP\TEST (for Windows
platforms)
!S BP TEST

Linking the Symbol Table
The symbol table lists all program elements and their types. These elements include
literals, constants, variables, labels, and arrays. The debugger will not run until a
symbol table is linked for the program being analyzed. You can use the symbol table
to learn about the program, and you can use the index numbers provided in the table
in some debugger commands. You can link the symbol table in the following two
ways:

ECL BASIC command using a debugger option.
Debugger EXEC command followed by the ECL BASIC command with a
debugger option.

ECL BASIC Command

Execute the ECL BASIC command with a debugger option to compile and build the
symbol table.

Syntax:

BASIC filename [TO filename] prog.name1 [progname2...] [options]

The following table describes each parameter of the syntax.

BASIC Parameters

Parameter Description

filename UniData DIR-type file containing the source code to be compiled.

TO filename UniData DIR-type file to receive the object code record, if different from
the location of the source code record.

program Source code to be compiled. You can compile more than one program by
separating the names with a space.

options See “BASIC Options” on page 1-7.
1-6 Using the UniBasic Debugger

BASIC Options
The following table lists the BASIC command options.

BASIC Options

Option Description

-D Creates a cross-reference table for use with the UniBasic debugger.

-G Generates a program that you can run with profiling.

-L
-LIST

Generates a list of the program.

-X
-XREF

Generates a cross reference table of statement labels and variable names used
in the program.

-Zn Creates a symbol table for use with the UniBasic debugger. UniData does not
recompile the program or expand $INCLUDE statements. Use one of the
following options:
Z1—for programs compiled on a UniData release earlier than release 3.1.
Z2—for programs compiled on UniData release 3.1 or later.

-I When you compile a program with the -I option, all reserved words in
UniBasic are case insensitive.

Debugger EXEC Command
You also can generate the symbol table from the debugger. Use the debugger EXEC
command to execute the BASIC command. The debugger -Z option directs UniBasic
to build the symbol table.

Syntax:

EXEC BASIC directory.name prog.name [-Z1 | -Z2]

Loading the Symbol Table
After you generate the symbol table, load the table with data from the program by
using the debugger Z command.
 Getting Started 1-7

Syntax:

Z {directory.file prog.name | cat.name}

Example

You might execute a program and break to the debugger only to find that the program
was not compiled with a debugger option. In this case, you can generate and load the
symbol table, as shown in the following example:

!EXEC BASIC BP locate.array -Z2
***Executing UNIDATA command: BASIC BP locate.array -Z2
Compiling Unibasic: BP/locate.array in mode 'u'.
compilation finished
!Z BP locate.array

Displaying the Symbol Table
The debugger * command displays the symbol table for the program you specify.

Syntax:

* [directory.file prog.name | cat.name]

Symbol Table Examples

The following example shows the symbol table with the names of the program
elements and their types for the program DEBUG.TEST:

!*
Program Name: BP/_DEBUG.TEST
 Name Type
 I variable
 A one dimension array
 L123 label
1-8 Using the UniBasic Debugger

In the following sample session, a programmer uses debugger option -Z2 to run a
program for which no symbol table exists, and then generates and loads the symbol
table from the debugger by using the ECL BASIC and debugger Z commands:

:RUN BP DEBUG.TEST -Z2
DEBUG.TEST
***DEBUGGER called at line 4 of program BP/_DEBUG.TEST
!*
***There is not symbol table in BP/_DEBUG.TEST
!EXEC BASIC BP DEBUG.TEST -Z2
***Executing UNIDATA command: BASIC BP DEBUG.TEST -Z2

Compiling Unibasic: BP/DEBUG.TEST in mode 'u'.
compilation finished
!Z BP DEBUG.TEST
!*
Program Name : BP/_DEBUG.TEST
 Name Type
 VAR1 variable
 VAR2 variable

Invoking the Debugger
After you prepare the program with one of the debugger options, invoke the debugger
using one of the following methods:

Execute a program that has UniBasic DEBUG statements in the source
code.
While running the program, press the break or interrupt key. You must know
what key is defined for this purpose on your system.
Run or execute the program with a debugger execution option.

When you invoke the debugger, UniBasic displays the debugger prompt (!).

Program DEBUG Statement

A UniBasic DEBUG command invokes the debugger. The debug statement operates
in conjunction with the ECL DEBUG.FLAG command. When DEBUG.FLAG is ON,
UniBasic executes the DEBUG command and invokes the debugger. When
DEBUG.FLAG is OFF, UniBasic ignores the DEBUG command.

For more information, see DEBUG in Chapter 2, “Debugger Commands Reference.”
For more information about the ECL DEBUG.FLAG command, see the UniData
Commands Reference.
 Getting Started 1-9

The Interrupt Key

You can stop program execution and enter the debugger by pressing the interrupt key,
which is usually defined as CTRL-C. To learn which key is defined for break or
interrupt on your system, see your system administrator.

Note: UDT.OPTIONS 38 determines where UniData positions you after you
interrupt a program. When UDT.OPTIONS 38 is ON, you are returned to ECL. When
UDT.OPTIONS 38 is OFF, you are returned to the debugger. For more information
about UDT.OPTIONS, see the UDT.OPTIONS Commands Reference.

Run or Execute with Debugger Option

When you run or execute the program, you can use the following options to invoke
the debugger:

Syntax:

RUN directory.name prog.name [-D | -E | -F | -D -E | -D -F]

or

directory.name prog.name [-D | -E | -F | -D -E | -D -F]

The following table describes the debugger options.

Run or Execute Debugger Options

Option Description

-D Immediately enters the debugger before the program executes.

-E Enters the debugger whenever a warning or runtime error occurs.

-F Enters the debugger only when a fatal error occurs.

-D -E Immediately enters the debugger. You execute the program from the debugger,
and then, if UniData encounters a warning or runtime error, it returns to the
debugger.

-D -F Immediately enters the debugger. You execute the program from the debugger,
and then, if UniData encounters a fatal error, it returns to the debugger.

For more information about debugger commands, including syntax and usage, see
Chapter 2, “Debugger Commands Reference.”
1-10 Using the UniBasic Debugger

Getting Debugger Help
The UniBasic debugger provides online help. When you enter H at the debugger
prompt, UniBasic displays an alphabetic summary of the debugger commands. You
also can enter a command name on the line with H. In the following example, the
programmer is requesting information on the debugger ABORT command:

!H ABORT

Exiting from the Debugger
When you want to terminate a debugging session, enter ABORT or END. The
following table identifies where UniData returns control.

Debugger Exit Destinations

Command Condition Action

ABORT ON.ABORT paragraph is
coded.

Proceeds to ON.ABORT
paragraph in the program.

ABORT ON.ABORT paragraph is not
coded.

Returns to ECL.

END UDT.OPTIONS 14 is ON and
ON.ABORT paragraph is
coded.

Proceeds to ON.ABORT
paragraph in the program.

END UDT.OPTIONS 14 is OFF, or
ON.ABORT paragraph is not
coded.

Returns to ECL.

Note: The ON.ABORT command lets you designate a paragraph to execute when a
program aborts. You can code the paragraph to do whatever you want, such as
execute a menu (which prohibits access to ECL), trap the abort condition and write
to a file, or log off.

For more information about UDT.OPTIONS, see the UDT.OPTIONS Commands
Reference. For information about UniData paragraphs and the ECL ON.ABORT and
CLEAR.ONABORT commands, see the UniData Commands Reference.
 Getting Started 1-11

Displaying Program Code and Output
During the debugging process, you can direct the UniBasic debugger to display or
suppress code as it executes, and display or suppress program output. You could find
these commands especially useful in conjunction with the E command, which
executes a specific number of lines of code.

Displaying Program Code and Output

Debugger
Command Action

V Displays or suppresses display of each line of code before it executes.

P Displays or suppresses display of program output on the display terminal.

For more information about debugger commands, including syntax and usage, see
Chapter 2, “Debugger Commands Reference.”
1-12 Using the UniBasic Debugger

Querying the Debugger
From the debugger prompt, you can list program status and variable values. These
interactive display commands provide the following capabilities.

Debugger Query Commands

Debugge
r
Comman
d Action

$ Prints the current line number and program name.

? Lists all subroutine programs on the stack. The stack contains the calling
program name and the number of the line after the call. This information
provides a path through the program calls to the current location.

D Lists all breakpoints and tracepoints.
For more information about breakpoints and tracepoints, see “Using Break-
points and Tracepoints” on page 1-16.

L Lists a specified number of lines of code surrounding the current line.

DI Displays database system connection information for open servers, including
user name, application name, and server name.

DL Displays elements inside a select list. In BASICTYPE U, use a select list
numbered from 0 through 9. In BASICTYPE P, use a variable name.

FI Displays information about a file, including the type, name, path, index
information, and privileges.

LI Displays lock status and type (for locked records).

For more information about debugger commands, including syntax and usage, see
Chapter 2, “Debugger Commands Reference.”
 Querying the Debugger 1-13

Printing and Changing Variables
The debugger provides commands that let you display and change the values in
variables. The following table describes these commands.

Printing and Changing Values

Debugger
Command Action

\array Prints the contents of all elements in an array as hexadecimal, octal, or ASCII
(the default), and enters new values.

\variable Prints the content of a variable, array, array element, or substring as
hexadecimal, octal, or ASCII (the default), and enters a new value.

SV Changes the value of a variable without displaying the original value of the
variable.

For more information about debugger commands, including syntax and usage, see
Chapter 2, “Debugger Commands Reference.”
1-14 Using the UniBasic Debugger

Watching Variables Change
Use the watch commands to display the values in variables when they change without
interrupting program execution. You can watch any number of variables with a single
watch command. When you set watch on a variable, UniData displays breakpoints
and tracepoints associated with that variable.

Watch commands provide the following capabilities.

Watching Variables Change

Debugger
Command Action

W Sets watch on designated variables.

WC Clears the watch on specified variables. The default is to clear the watch on
all variables.

WD Displays all variables that are being watched.

Tip: The breakpoint and tracepoint commands also display the values of variables.
They offer more flexibility, but have more complex syntax. For more information, see
“Using Breakpoints and Tracepoints” on page 1-16.

For more information about debugger commands, including syntax and usage, see
Chapter 2, “Debugger Commands Reference.”
 Watching Variables Change 1-15

Using Breakpoints and Tracepoints
Like the watch commands, you can use the breakpoint and tracepoint commands to
view labels and variables during a program run. Unlike the watch commands, break-
point and tracepoint commands control program execution so you can execute a
portion of the program before reentering the debugger. You can also use these
commands to monitor expression evaluation and break on subroutine and program
calls. These powerful commands are explained in the following subsections:

“What Are Breakpoints?”
“What Are Tracepoints?”
“What You Can Trace and Break On”
“Breakpoint and Tracepoint Commands”

Tip: The debugger stores breakpoints and tracepoints in break and trace tables. The
tables provide index numbers that are required by some debugger commands. The
BD, TD, and D commands list the table(s).

What Are Breakpoints?
A breakpoint is a point at which UniBasic displays a variable value and enters the
debugger. Use these commands to stop execution and examine the program and its
variables at key points in program execution.

What Are Tracepoints?
A tracepoint is a point at which UniBasic displays variable values and continues to
execute the program. You can elect to display variables at specific points in the
program execution or when the values of the variables change.

What You Can Trace and Break On
You can set breakpoints and tracepoints on any of the following:

Successful expression evaluation, such as when the variable FLAG multi-
plied by the variable CODE is greater than 7(FLAG * CODE > 7).
Source code line number.
1-16 Using the UniBasic Debugger

Label.
Variable value, such as when the variable FLAG has a value of 7 (FLAG =
7).
Subroutine call.

Note: You also can use the watch commands to display the value of variables. Watch
commands are less flexible, but are much simpler to use than breakpoint and trace-
point commands. For more information, see “Watching Variables Change” on
page 1-15.

Breakpoint and Tracepoint Commands
You can use the following commands to create and use breakpoints and tracepoints.
These commands reference the index numbers in the break or trace table. If you do
not designate an index entry number, UniBasic acts on all breakpoints or tracepoints.

Breakpoint and Tracepoint Commands

Command Action

B or T Creates new breakpoints or tracepoints associated with variable(s).

BG or TG Creates and associates with a label.

BL or TL Creates and associates with a line number.

BP or TP Creates and associates with a program call.

BD or TD Displays break and trace tables.

D Lists break and trace tables.

BE or TE Enables.

BU or TU Disables.

BC or TC Clears.

Examples
In the following example, the output displays the six breakpoints currently set. For
each entry in the table, UniBasic lists:
 Using Breakpoints and Tracepoints 1-17

The index number required by breakpoint and tracepoint commands.
The program for which the breakpoint is specified.
The commands and arguments associated with the breakpoint.
Whether the entry is currently enabled or disabled.

!D
Break table:
[1] /disk2/uddev/ud61/sys/CTLG/p/port: BP port Enable
[2] BP/_DBG.DEMO: BG LABEL.4 Enable
[3] BP/_DBG.DEMO: BL 38 Enable
[4] BP/_DBG.DEMO: B I? I>2 -U 3 Disable
[5] BP/_DBG.DEMO: B ARRAY(7)? ARRAY(7)>1 -D ARRAY(7) Enable
[6] BP/_DBG.DEMO: B I? I>2 -U 3 Enable

The following table describes the parameters in line [2] of the D command output.

Debugger D Command Example Description

Value in This
Example Description

[2] Line number in the break table.

BP/_DBG.DEMO Directory and name of the program being debugged.

BG Command(s) that set the breakpoints and/or tracepoints on this
line.

LABEL.4 Name of the variable, label, or other element associated with
the breakpoint or tracepoint.

Enabled Status of the breakpoint or tracepoint (enabled or disabled).
1-18 Using the UniBasic Debugger

The following table explains additional examples of the B and T commands. For
more information about the B and T command occurrence codes -A, -E, and -U, see
B and T in Chapter 2, “Debugger Commands Reference.”

Breakpoint and Tracepoint Command Examples

Command Description

T CODE -A 2 Traces the CODE variable and starts displaying its value after it
changes twice.

T CODE -E 2 Traces the CODE variable and displays its value every second
time the value changes.

T CODE -U 3 Traces the CODE variable and displays its value twice (until the
value changes three times).

B CODE -A 2 Breaks when the value of the CODE variable changes twice.

T CODE -E 2 -D TYPE Traces the CODE variable and displays its value every second
time the value changes. In addition, displays the value of TYPE
when the value of CODE displays.
 Using Breakpoints and Tracepoints 1-19

Saving and Loading the Debug Environment
The UniBasic debugger enables you to save information about debug environments
to the _DEBUG_ file. This file can contain debug information, including break-
points, tracepoints, watches, and status information, for multiple debug environments
identified by record ID. During a debug session, you can load debug environment
information from the _DEBUG_ file.

UniData creates the _DEBUG_ file system file as an empty file, along with the
associated dictionary file, under the account directory when you run the system-level
newacct command.

Note: The current program must declare the variables included in the loading debug
environment. Otherwise, the UniBasic debugger issues a syntax error message.

The following table describes the debugger commands available to save and load
debug environments.

Saving and Loading Debug Environments

Command Action

EL Loads breakpoints, tracepoints, and watches, along with their status
information, from the _DEBUG_ file.

ES Saves breakpoints, tracepoints, and watches, along with their status
information, to the _DEBUG_ file.
1-20 Using the UniBasic Debugger

Accessing Data in Files
You can open UniData and operating system files from the debugger in read-write or
read-only modes. With this capability, you can address file errors without stopping
your process to correct the problem. This section includes the following subsections:

“Debugger Open File Commands”
“Accessing a UniData File”

Debugger Open File Commands
The following table shows the commands you can use to open files from the
debugger.

Accessing Data in Files

Debugger
Command Action

EL Loads breakpoints, tracepoints, and watches, along with their status
information, from the _DEBUG_ file.

ES Saves breakpoints, tracepoints, and watches, along with their status
information, to the _DEBUG_ file.

Accessing a UniData File
This section explains how to open a UniData file and select record IDs.

1. Open a File

The SF command opens the file filename to the file variable.

Syntax:

SF variable [-R] [filename | DICT filename | absolute.pathname]
 Accessing Data in Files 1-21

The following table describes each parameter of the syntax.

SF Command Parameters

Parameter Description

variable Indicates the name of the file variable.

-R Sets the file to read-only mode. The default is read-write.

DICT Indicates that the file being opened is a dictionary.

 filename Indicates the name of the dictionary file being opened.

absolute.pathname Indicates the operating system path to the UniData file, including the
file name.

In the following example, the debugger opens the file TEST.FILE to the file variable
TEST in read-only mode and opens the file DICT TEST.FILE to the file variable
DICT.TEST.

!SF TEST -R TEST.FILE
!SF DICT.TEST DICT TEST.FILE

2. Select Record IDs

The SL command selects record IDs in filename to the designated select list number.

Syntax:

SL {select.list.no | select.list.name} [DICT] filename

Note: select.list.name is provided for BASICTYPE P programs only.

In the following example, the SL command selects record IDs in TEST.FILE to list
0, and selects record IDs in DICT TEST.FILE to list 1:

!SL 0 TEST.FILE
!SL 1 DICT TEST.FILE
1-22 Using the UniBasic Debugger

Executing Programs from the Debugger
With UniBasic debugger execution commands, you can execute a program until it
reaches a specified line, label, or program. If UniData does not find the target line,
label, or program, and if it does not execute a DEBUG statement, the program
completes. Select from the commands in the following table to execute a program.

Executing Programs from the Debugger

Debugge
r
Comman
d Action

E Executes to a breakpoint, to the number of lines specified, or to the end of the
program if the number of lines specified is not reached. The E command counts
lines in external subroutines it executes.

G Executes, beginning with a specified line, through the end of the program. The
default is the current line. This command honors all settings, such as break-
points and tracepoints.
Unlike the E command, the G command does not allow you to specify the
number of lines to execute.

N Executes to a breakpoint, to the number of lines specified, or to the end of the
program if the number of lines specified is not reached. The N command
counts an external subroutine it executes as one line.

OUT Executes until control passes back to the calling program.

PG Executes to the specified label.

PL Executes the specified line. If the line is not executable, display an error
message.

PP Executes until the specified program is called.
 Executing Programs from the Debugger 1-23

Accessing ECL and the Operating System
To execute ECL commands, or operating system commands and editors from the
debugger, you can enter one of the following:

Colon (:) or EXEC followed by a ECL command.
! (bang) command followed by an operating system command.

Colon
To execute an ECL command, use a colon (:) followed by the ECL command you
want to execute.

Syntax:

:ECL.command

In the following example, a colon is followed by the TIME command:

***DEBUGGER called at line 53 of program BP/_TEST.4
!:TIME
***Executing UniData command: TIME
Thu Sep 10 17:48:09 CDT 1995
***DEBUGGER called at line 53 of program BP/_TEST.4
!

EXEC Command
You can use the EXEC command at the debugger prompt (!) to execute an ECL
command.

Syntax:

EXEC ECL.command

In the following example, UniData executes the DATE command:

!EXEC DATE
***Executing UniData command: DATE
Thu Sep 10 17:48:09 CDT 1995
***DEBUGGER called at line 53 of program BP/_TEST.4
!

1-24 Using the UniBasic Debugger

! (Bang) Command
You can use the ! (bang) command at the debugger prompt to execute an operating
system command.

Syntax:

!oper.sys.command

In the following example, the ! command executes the UNIX command ls -ld *VOC,
which lists files ending with the string “VOC.” Notice the two exclamation points.
The first one is the debugger prompt, and the second one is the debugger command.

!!ls -ld *VOC
***Executing UNIX command: ls -ld *VOC
-rw-rw-rw 1 bobm unisrc 4096 Aug 19 15:24 D_VOC
-rw-rw-rw 1 bobm unisrc 111616 Oct 28 13:11 VOC
!

In the next example, the exclamation point command executes the Windows
command dir *VOC, which again lists files ending with the string “VOC”:

!!dir *VOC
***Executing NT command: dir *VOC
 Volume in drive D has no label.
 Volume Serial Number is 6478-7FC4

 Directory of D:\UniData60\demo

10/08/99 03:02p 4,096 D_voc
10/28/99 10:04a 105,472 Voc
 2 File(s) 109,568 bytes
 2,483,828,224 bytes free
!

 Accessing ECL and the Operating System 1-25

Using Dual-Terminal Debugging
Dual-terminal debugging enhances the debugging process. You can use this feature
to log in to two terminals or open two windows: one for the debugger, and the other
for application output. This method is especially helpful when you debug full-screen
or GUI applications.

You can set up a dual-terminal debugging session from the ECL prompt or from
within the debugger.

This section includes the following subsections:

“Initiating Dual-Terminal Debugging (UNIX)”
“Initiating Dual-Terminal Debugging (Windows Platforms)”
“Ending Dual-Terminal Debugging”

Initiating Dual-Terminal Debugging (UNIX)
Use the following procedure to initiate dual-terminal debugging from the ECL
prompt on UniData for UNIX.

1. Log On to Two Terminals or Open Two Windows
Log in to two terminals or open two windows on the same terminal. Note the device
numbers. You can use the UNIX tty and w commands to determine device numbers.

Note: For more information about these operating system commands, see your
operating system manuals.

The following example uses the UNIX tty command to determine a device number:

%tty
/dev/pty/ttyv5

The following example uses the w command to determine the device number for the
second terminal or window:

% w carolw
 5:26pm up 67 days, 1:04, 6 users, load average: 0.08, 0.09, 0.07
User tty login@ idle JCPU PCPU what
carolw pty/ttyv5 5:24pm w carolw
carolw pty/ttyv6 5:24pm 1 -csh
1-26 Using the UniBasic Debugger

2. Assign Debugger and Application Terminals

Decide which terminal/window to use to interact with the debugger and which one to
use for application output. In this example, we assign the terminals/windows as
follows:

Application terminal – ttyv5
Debugger terminal – ttyv6

3. Initiate UniData on the Application Terminal

Initiate UniData on the application terminal or window. The following example
demonstrates the udt command, which initiates UniData:

% udt
UniData Release 7.2 Build: (3143)
(c) Copyright IBM Corporation 2005.
All rights reserved.

Current UniData home is /users/ud_33219/.
Current working directory is /users/carolw/carol.
:

4. Put the Debugging Terminal to Sleep

You must put the debugging terminal to sleep with a long sleep period to prevent the
command processor from attempting to interpret your debugging commands. Issue
this command on the debugging terminal at the UNIX prompt. In the following
example, we use a sleep period of 3200000:

% sleep 3200000

5. Set the Debugging Terminal Line

On the application terminal (in this example, ttyv5), execute the ECL SETDEBU-
GLINE command to make the debug line attachable. Be sure to specify the full path
to the debugging terminal.

Syntax:

SETDEBUGLINE absolute.path
 Using Dual-Terminal Debugging 1-27

In the following example, the SETDEBUGLINE command makes a debug line
attachable (in this example, ttyv6):

:SETDEBUGLINE /dev/pty/ttyv6
:

The cursor returns immediately to the ECL prompt. If an error message is displayed,
the debug line is not set. In this case, check your device number and path, and try
again.

6. Attach the Debugging Terminal Line

On the application terminal, attach the debug line to the debugger using the
DEBUGLINE.ATT command.

Syntax:

DEBUGLINE.ATT

In the following example, the DEBUGLINE.ATT command attaches the debug line
to the debugger:

:DEBUGLINE.ATT
:

If you attempt to attach to a line before making the line attachable, or if you attempt
to attach the wrong line, an error message displays. Check the device number and
path you are using for the debugging terminal, and try again.

7. Run the Program

Now you are ready to invoke your program with the appropriate debug options from
the application terminal:

:RUN NEWDEMO GADGETS -D

8. Invoke the Debugger

Invoke the debugger by:

Running a program that contains a DEBUG statement.
Running a program that uses a debugger option.
Running a program, and then pressing the interrupt key.
1-28 Using the UniBasic Debugger

For instructions about initiating the debugger, see “Invoking the Debugger” on
page 1-9. When you enter the debugger, notification is sent to the debugging terminal
(in this case, ttyv6):

***DEBUGGER called at line 1 of program NEWDEMO/_GADGETS
!

If debugger output does not appear on the debugging terminal (in this example,
ttyv6), you must terminate the program to try again. You also will need to detach the
line and remove the pointer to the terminal that is currently and incorrectly displaying
the debugger messages. For the ECL commands to do this, see “Ending Dual-
Terminal Debugging” on page 1-32.

9. Conduct the Debugging Session

Interact with the debugger on the debugging terminal (in this example, ttyv6), and
interact with the program on the application terminal (in this example, ttyv5).

Initiating Dual-Terminal Debugging (Windows
Platforms)
To initiate dual-terminal debugging from the ECL prompt on UniData for Windows
Platforms, perform the following steps:

1. Log In to Two Terminals or Open Two Windows

Log in to two terminals or open two windows on the same terminal.

2. Initiate the Dual-Terminal Debugging Session
From the terminal or window on which you want to run the dubugger, use the
dbgterm command to initiate the dual-terminal debugging session.

Note: Because the dbgterm command uses TCP/IP, you must have TCP/IP installed
on both the debugger and application terminals.

The dbgterm command is located in the udtbin directory.

Syntax:

dbgterm
 Using Dual-Terminal Debugging 1-29

After you execute the command, the screen displays the host address (with the format
hostname:portnumber). The host name can be a symbolic name (in the following
example, engine) or a literal name (for example, hst1.ibm.com). The host address can
be an IP address that includes a port number at the end (for example,
192.245.120.110:4294).

D:\>dbgterm
Host address: engine:4284

The dbgterm command automatically assigns a port number. If you want to assign a
specific port number, use the following command.

Syntax:

dbgterm [-p portnumber]

where portnumber is the number of the port you want to assign.

3. Start UniData on the Application Terminal

Start UniData on the application terminal or window by executing the udt command.
The following example shows how to use the command from the MS-DOS prompt:

D:\IBM\ud61\bin>udt

UniData Release 7.2 Build: (3143)
(c) Copyright IBM Corporation 2005.
All rights reserved.

Current UniData home is D:\IBM\ud72\
Current working directory is D:\UniData71\demo.
:

4. Set the Debugging Terminal Line

On the application terminal, execute the ECL SETDEBUGLINE command to make
the debug line attachable.

Syntax:

SETDEBUGLINE hostname:portnumber

In the following example, the SETDEBUGLINE command makes a debug line
attachable:

:SETDEBUGLINE engine:4294
:

1-30 Using the UniBasic Debugger

In the following example, the SETDEBUGLINE command specifies an IP address
and port number, which must be enclosed with quotation marks:

:SETDEBUGLINE "192.245.120.110:4294"
:

After you execute the SETDEBUGLINE command, the cursor returns immediately
to the ECL prompt. If an error message is displayed, the debug line is not set. In this
case, check your host name and port number, and try again.

5. Attach the Debugging Terminal Line

On the application terminal, attach the debug line to the debugger using the
DEBUGLINE.ATT command.

Syntax:

DEBUGLINE.ATT

In the following example, the DEBUGLINE.ATT command attaches the debug line
to the debugger:

:DEBUGLINE.ATT
:

If you attempt to attach to a line before making the line attachable, or if you attempt
to attach the wrong line, an error message displays. Check the host name and port
number for the debugging terminal, and try again.

6. Run the Program

Now you are ready to run your program with the appropriate debug options from the
application terminal:

:RUN NEWDEMO GADGETS -D

7. Invoke the Debugger

Invoke the debugger by:

Running a program that contains a DEBUG statement.
Running a program using a debugger option.
Running a program, and then pressing the interrupt key.
 Using Dual-Terminal Debugging 1-31

For instructions about initiating the debugger, see “Invoking the Debugger” on
page 1-9. When you enter the debugger, notification is sent to the debugging
terminal:

***DEBUGGER called at line 1 of program NEWDEMO_GADGETS
!

If debugger output does not appear on the debugging terminal, you must terminate
the program to try again. You also will need to detach the line and remove the pointer
to the terminal that is currently and incorrectly displaying the debugger messages.
For the ECL commands to do this, see “Ending Dual-Terminal Debugging” on
page 1-32.

8. Conduct the Debugging Session

Interact with the debugger on the debugging terminal, and interact with the program
on the application terminal.

Ending Dual-Terminal Debugging
To end dual-terminal debugging, complete the following steps:

1. Exit from the Debugger

You can exit from the debugger in two ways:

Let the program run to termination.
Enter the END or ABORT commands from the debugging terminal. For
more information about these commands, see “Exiting from the Debugger”
on page 1-11.

2. Detach the Debugging Terminal

You can detach the debugging terminal from the debugger or ECL prompt.
1-32 Using the UniBasic Debugger

Debugger Prompt

On the application terminal, enter the debugger LD command or the debugger colon
(:) command, followed by the ECL DEBUGLINE.DET command, as shown in the
following examples:

! LD
!

or

!:DEBUGLINE.DET
!

ECL Prompt

On the application terminal, at the ECL prompt, enter the ECL DEBUGLINE.DET
command as follows:

: DEBUGLINE.DET
:

In both of the previous methods, the cursor returns to the prompt, and UniData does
not display a confirmation message. If you run the program now with debugging
options, debugger messages will be routed to the application terminal. However, you
can attach the debugging terminal again and resume dual-terminal debugging.

3. Release the Debugging Terminal

You can release the debugging terminal from the debugger prompt or from ECL.

Debugger

Enter the debugger LU command, as shown in the following example:

!LU
!

ECL

Enter the ECL UNSETDEBUGLINE command, as shown in the following example:

:UNSETDEBUGLINE
:

 Using Dual-Terminal Debugging 1-33

The cursor returns to the prompt again, and UniData does not display a confirmation
message.
1-34 Using the UniBasic Debugger

2
Chapter
Debugger Commands
Reference
Elements of Syntax Statements 2-6
Summary of Debugger Commands 2-7
 Display Variables and Break to Debugger 2-7
 Display and Change 2-8
 Execute . 2-8
 End . 2-9
 External Execute 2-9
 Open File . 2-10
 Dual-Terminal Debugging 2-10
 Utilities . 2-11
! . 2-12
$. 2-13
: . 2-14
? . 2-15
*. 2-16
\array . 2-17
\variable . 2-19
ABORT . 2-21
B . 2-22
BASIC . 2-25
BC . 2-28
BD . 2-29
BE . 2-30
BG . 2-32
BL . 2-34
BP . 2-36
BU . 2-38

2-2 Usi
D . 2-39
DEBUG. 2-41
DI . 2-42
DL . 2-43
E . 2-44
EL . 2-46
END . 2-47
ES . 2-48
EXEC . 2-49
FI. 2-50
G . 2-51
H . 2-52
L . 2-53
LA . 2-55
LD . 2-56
LI. 2-57
LS . 2-58
LU . 2-59
N . 2-60
OUT . 2-62
P . 2-64
PG . 2-65
PL . 2-66
PP . 2-67
SF . 2-69
SL . 2-71
SO . 2-73
SS . 2-74
SZ . 2-76
T . 2-77
TC . 2-80
TD . 2-82
TE . 2-84
TG . 2-86
TL . 2-89
TP . 2-92
ng the UniBasic Debugger

TU . 2-94
V . 2-95
W . 2-96
WC. 2-98
WD . 2-99
Z . 2-100
 2-3

This chapter contains the following:

Summary of debugger commands.
Detailed alphabetic listing of all UniBasic debugger commands with
working examples.
2-4 Using the UniBasic Debugger

Elements of Syntax Statements
This reference chapter uses a common method for stating syntax for UniData
commands. The syntax statement includes the command name, required arguments,
and parameters you can use with the command. Italic type represents a variable that
you can replace with any valid option. The following figure illustrates the elements
of a syntax statement.

COMMAND required [option] [option1 | option2]
{option1 | option2} required... "string"

command names

no brackets or braces
indicates a required

argument

square brackets indicate
an optional argument

a vertical line indicates that
you can choose between

the given arguments

braces indicate that you
must choose between
the given arguments

an ellipsis indicates that
you can enter more than

one argument

quotation marks

appear in boldface

must enclose a
literal string
 Elements of Syntax Statements 2-5

Summary of Debugger Commands
The following tables summarize the UniBasic debugger commands.

Note: All UniBasic debugger commands are case insensitive.

Display Variables and Break to Debugger
Use the following commands to display the value of variables and/or exit to the
debugger.

Display and Break Commands

Watch Break Trace

W Watch (display
variable when
value changes)

B Break on variable
(exit to debugger).

T Trace (display
variable when value
changes).

BG Break on label. TG Trace on label.

BL Break on line number. TL Trace on line number.

BP Break on program
call.

TP Trace on program
call.

WC Watch clear BC Break clear. TC Trace clear.

BU Break disable. TU Trace disable.

BE Break enable. TE Trace enable.

WD Watch display
(display variables
being watched)

BD Break display. TD Trace display.

D Display (all break and trace points).
2-6 Using the UniBasic Debugger

Display and Change
Use the following commands to display information about variables and change their
values.

Display and Change Commands

Comman
d Action

\ Displays value of variable or array.

* Displays all variable names and types.

SV String variable – Assigns string to variable.

SZ Size – Displays size of variable.

Execute
Use the following commands to execute all or part of the program.

Execute Commands

Command Action

G Go – Goes to line number and executes.

GP Go Program – Begins executing at the program specified.

E Execute – Executes specified number of lines (counts external subroutine
lines).

N Next – Executes specified number of lines (counts external subroutines as
one line).

OUT Back – Executes until RETURN.

PG Proceed – Goes to the label specified, and then exits to the debugger.

PL Line – Executes beginning at the line specified.

PP Program – Executes until the specified program is called.
 Summary of Debugger Commands 2-7

End
Use the following commands to terminate program execution and the debugging
session.

End Commands

Command Action

ABORT Ends by doing one of the following:
Returns to ECL.
Executes ON.ABORT paragraph.

END Depending on setting of UDT.OPTIONS 14, ends by doing one of the
following:
Returns to ECL (when UDT.OPTIONS 14 is ON).
Executes ON.ABORT paragraph (when UDT.OPTIONS 14 is OFF).

External Execute
Use the following commands to execute ECL or operating system commands.

External Execution Commands

Command Action

! Executes operating system command.

: Executes UniData command.

EXEC Executes UniData command.
2-8 Using the UniBasic Debugger

Open File
Use the following commands to open files.

Open File Commands

Command Action

SF Opens a UniData file.

SO Opens an operating system file.

SS Opens a sequential file.

Dual-Terminal Debugging
Use the following commands to control dual-terminal debugging.

Dual-Terminal Commands

Comman
d Action

LA Attaches line.

LD Detaches line.

LS Sets line.

LU Unsets line.

P Suppresses or displays program output to the display terminal.
 Summary of Debugger Commands 2-9

Utilities
Use the following commands to obtain information about the program you are
debugging.

Utlities Commands

Command Action

$ Displays program name and line number.

? Displays subroutine stack.

DI Displays open server information.

DL Displays select list elements.

EL Loads breakpoint, tracepoint, and watch information, along with their status
information, from the _DEBUG_ file.

ES Saves breakpoint, tracepoint, and watch information, along with their status
information, to the _DEBUG_ file.

FI Displays file information.

L Lists source code.

LI Displays lock information.

P Displays program output (toggle).

S Loads source code.

SL Selects record IDs to a variable.

V Displays source lines before execution (toggle).

Z Loads symbol table.
2-10 Using the UniBasic Debugger

!

Syntax
!oper.sys.command

Description
The debugger ! (bang) command lets you execute an operating system command
from the debugger.

Examples
In the following example, UniData executes the UNIX command ls -ld *VOC, which
lists files ending with the string “VOC.” Notice that two exclamation points appear
on the command line in this example. The first one is the debugger prompt, and the
second one tells the debugger to execute the accompanying operating system
command.

!!ls -ld *VOC
***Executing UNIX command: ls -ld *VOC
-rw-rw-rw 1 bobm unisrc 4096 Aug 19 15:24 D_VOC
-rw-rw-rw 1 bobm unisrc 111616 Oct 28 13:11 VOC
!

In the next example, the bang command executes the system-level command dir
*VOC, which lists files ending with the string “VOC”:

!!dir *VOC
***Executing NT command: dir *VOC
 Volume in drive D has no label.
 Volume Serial Number is 6478-7FC4

 Directory of D:\UniData71\demo

10/08/99 03:02p 4,096 D_voc
10/28/99 10:04a 105,472 Voc
 2 File(s) 109,568 bytes
 2,483,828,224 bytes free
!

 ! 2-11

$

Syntax
$

Description
The debugger $ command prints the current line number and name of the program
you are debugging.

Example
The following example was executed at line 50 of the TEST program:

!$
***At line 50 of program BP/_TEST
2-12 Using the UniBasic Debugger

:

Syntax
:ECL.command

Description
The debugger : (colon) command executes an ECL command from the debugger.

Example
In the following example, the user entered a colon followed by the TIME command
from the debugger:

***DEBUGGER called at line 53 of program BP/_TEST.4
!:TIME
***Executing UniData command: TIME
Thu Sep 10 17:48:09 CDT 1999
***DEBUGGER called at line 53 of program BP/_TEST.4
!

 : 2-13

?

Syntax
?

Description
The debugger ? command lists all subroutine programs on the stack. The stack
contains the calling program name and the number of the line after the program call.
This information provides a path through the program calls to the current line.

Example
In the following example, the output lists two programs currently on the stack. The
programs are GADGETS and MENU_DRIVER.

!?
[1] NEWDEMO/_GADGETS: 69
[2] /users/carolw/CTLG/MENU_DRIVER: 3
2-14 Using the UniBasic Debugger

*

Syntax
*

Description
The debugger * command displays the debugger symbol table. The symbol table is
required to run the debugger.

Example
The following example shows a partial listing of the symbol table for the sample
program in Developing UniBasic Applications:

!*
Program Name : BP/_UPDATE_ORDER
 Name Type
 ADDRESS variable
 CITY variable
 CLIENT.REC variable
 CLIENT_FILE variable
 CLIENT_NUMBER variable
 COLOR variable
 COLOR_LINE variable
 COMMAND variable
 ENTRY variable
 FINISHED variable
 MESSAGE variable
 NEED.TO.WRITE variable
 NEW.PRICE variable
 NEW_CLIENT variable
 NUM_ENTRIES variable
 OLD_CLIENT variable
...
 * 2-15

\array

Syntax
\array [X | x | O | o]

Description
The debugger \array command prints the contents of the elements in an array as
hexadecimal (X or x), octal (O or o), or ASCII (the default). The debugger displays
each element individually, and follows each element with a prompt for a new value
to replace that element.

Parameters
The following table describes each parameter of the syntax.

\array Parameters

Parameter Description

array Names the array to print.

X or x Indicates that the array is to be displayed in hexadecimal.

O or o Indicates that the array is to be displayed in octal.

No parameter Indicates that the ASCII value of the array elements is to be displayed.
2-16 Using the UniBasic Debugger

Example
In the following example, the elements in TEST.ARRAY are displayed one at a time,
and the user is prompted for a replacement value:

!\TEST.ARRAY
TEST.ARRAY(1)=1^1;
Enter new value (hit <CR> for no change)=
Continue? (hit <CR> to continue)
TEST.ARRAY(2)=2^2;
Enter new value (hit <CR> for no change)=
Continue? (hit <CR> to continue)
.
.
.
TEST.ARRAY(10)=10^10;
Enter new value (hit <CR> for no change)=
 \array 2-17

\variable

Syntax
\variable [(i1 [,i2])] [<a,[v,[s]]>] [[d,] p, l]] [X | x | O | o]

Description
The debugger \variable command prints the contents of a variable as hexadecimal,
octal, or ASCII (the default), and prompts for a replacement value.

Parameters
The following table describes each parameter of the syntax.

\variable Parameters

Parameter Description

variable Specifies the variable to print and possibly change.

(i1, i2) Specifies the element of a dimensioned array to be displayed.

<a, v, s> Specifies the attribute, value, and subvalue of a dynamic array to be printed
and possibly changed.

d, p, l Specifies the delimiter, starting position, and length of a substring to be
printed and possibly changed.

X or x Indicates that the array is to be displayed in hexadecimal.

O or o Indicates that the array is to be displayed in octal.

no parameter Indicates that the array is to be displayed in ASCII.
2-18 Using the UniBasic Debugger

Example
In the following example, the ASCII value of TEST.ARRY elements is displayed:

!\TEST.ARRAY(1)
TEST.ARRAY(1)=1^1;
Enter new value (hit <CR> for no change)=
!\TEST.ARRAY(1)<1>
TEST.ARRAY(1)<1>=1
Enter new value (hit <CR> for no change)=
!\TEST.ARRAY(1)<2>
TEST.ARRAY(1)<2>=1

The following example displays the value of the variable TITLE1 in the program
GADGETS:

!\TITLE1
TITLE1=UniData Gadgets'
 \variable 2-19

ABORT

Syntax
ABORT

Description
The debugger ABORT command ends the debugging session. UniBasic executes the
ON.ABORT paragraph if it is included in the UniBasic program. Otherwise, the
cursor returns to ECL.

Related Topics

END

The debugger END command also terminates a debugging session. However, END
can disregard the ON.ABORT paragraph and return the cursor to ECL immediately.
2-20 Using the UniBasic Debugger

B

Syntax
B variable [?condition] [-occurrence.option] count [-D variable1 [,variable2]...

Description
The debugger B command creates a new breakpoint. You can include optional quali-
fiers that must be satisfied before the break is executed.

Note: At a breakpoint, UniData stops execution and enters the debugger.

Parameters
The following table describes each parameter of the syntax.

Parameter Description

variable The variable for which you want to create a breakpoint.

?condition A condition that must be met to create a breakpoint. For example, if
you specify ?X=7, UniBasic will not create a breakpoint until this
condition is met.

-occurrence.option A second condition that affects when the value of the variable will
be displayed:
? -A – After the value changes count times.

? -E – Each time the value changes count times. For example, if
count is set to 10, the value displays at the tenth, twentieth,
thirtieth, and every tenth time the value changes.

? -U – Until the value changes the number of times specified in
count.

Note: Occurrence options are mutually exclusive. You can use only
one for any breakpoint.

B Parameters
 B 2-21

Examples
In the following example, a tracepoint is associated with the variable ACTIVE.LINE
program MENU_DRIVER. The contents of this variable are displayed every other
time it changes. Notice that the command line overlays a portion of the program
output showing the main menu.

 >> Client Information <<
!B ACTIVE.LINE -E 2 Information
 Order Information

When the value in ACTIVE.LINE changes twice, the following message appears:

***Broke on command B ACTIVE.LINE -E 2
!

The following execution uses the sample program in Developing UniBasic Applica-
tions. First, the user creates a breakpoint associated with:

Variable COMMAND
Condition COMMAND="A"
Occurrence -E2 (indicating every two times COMMAND changes)

Then the user executes the program with the debugger N command:

!B COMMAND ?COMMAND="A" -E2
!N

count A number of variable changes. Used in occurrence.option.

-D One or more variables are associated with this breakpoint. UniData
displays the value of the associated variable(s) when the primary
variable (and, if applicable, the breakpoint condition) is reached.

variable1... Specifies the associated variable(s) to display when the primary
variable (and, if applicable, the breakpoint condition) is reached.

Parameter Description

B Parameters (continued)
2-22 Using the UniBasic Debugger

Finally, the debugger breaks after COMMAND changes twice and contains the value
A:

 ORDER MAINTENANCE

 (Enter Q to quit)
 Order #: 941
 Date: 01/14/1996 York Software
 Time: 03:00PM 2589 Celtic St.
 Abbotsford
 Client #10009 VIC, 3067 Australia
 Product 50000

 Color: Gray
 Qty: 10
 Price: $1,399.99

 Enter A)lter, D)elete, or Q)uit: A
***Broke on command B COMMAND ?COMMAND="A"
***DEBUGGER called at line 209 of program BP/_UPDATE_ORDER

Related Topics

T

The debugger T command creates a new tracepoint.

BC
The debugger BC command deletes a breakpoint.

Breakpoints

For more information about breakpoints, see “Using Breakpoints and Tracepoints” in
Chapter 1, “Using the Debugger.”
 B 2-23

BASIC

Syntax
BASIC filename [TO filename] prog.name1 [prog.name2...] [options]

Description
The ECL BASIC command compiles UniBasic source code into interpretive code to
be used with the UniBasic interpreter. UniData names the resulting object code
record _prog.name where prog.name is the name of the source code record.

You can create a select list, and then execute BASIC to compile all programs in the
select list. For example, to select and compile all UniBasic source files in the BP
directory, enter

SELECT BP WITH @ID UNLIKE "_..."

and then enter

BASIC BP

Parameters
The following table describes each parameter of the syntax.

BASIC Parameters

Parameter Description

filename The UniData DIR-type file containing the source code to be compiled.

TO filename The UniData DIR-type file to receive the object code record if different from
the location of the source code record.

prog.name The source code to be compiled. You can compile more than one program
by separating the names with a space.

options See “BASIC Options” on page 2-25.
2-24 Using the UniBasic Debugger

BASIC Options
The following table lists the BASIC command options.

BASIC Options

Option Description

-D Creates a cross-reference table for use with the UniBasic debugger.

-G Generates a program that you can run with profiling.

-L
-LIST

Generates a list of the program.

-X -L
-XREF -L

Generates a cross reference table of statement labels and variable names used
in the program.

-Zn Creates a symbol table for use with the UniBasic debugger. UniData does not
recompile the program or expand $INCLUDE statements. Use one of the
following options:
Z1 – For programs compiled on a UniData release before release 3.1.
Z2 – For programs compiled on UniData release 3.1 or later.

-I When you compile a program with the -I option, all reserved words in
UniBasic are case insensitive.

Examples
In the following example, the BASIC command compiles the program TEST, which
is found in the BP file, and stores the resulting object code as _TEST:

:BASIC BP TEST -D

Compiling Unibasic: BP/TEST in mode 'u'.
compilation finished

In the next example, the SELECT command saves in select list 0 the names of all
programs in the BP file with names (record IDs) beginning with T. Then, the BASIC
command compiles the selected program.
 BASIC 2-25

In the next example, a SELECT statement is used to select all programs that start with
the letter “T”, and then they are compiled:

:SELECT BP WITH @ID LIKE "T..."

1 records selected to list 0.

>BASIC BP

Compiling Unibasic: BP/TEST in mode 'u'.
compilation finished

The next example saves the executable in a DIR-type file different than the one that
contains the source code. In the first line, the program named test, which resides in
BP, is compiled. The executable is placed in PROGRAMS. Finally, the program is
executed from PROGRAMS, and it prints “Hello.”

:BASIC BP TO PROGRAMS test

Compiling Unibasic: BP/test in mode 'u'.
compilation finished
:RUN PROGRAMS test
Hello
2-26 Using the UniBasic Debugger

BC

Syntax
BC [index_num]

Description
The debugger BC command removes one or all breakpoints. To clear a single break-
point, include the index entry for that breakpoint in the break table. If you do not
specify an index number, the debugger deletes all breakpoints. The debugger does not
confirm deletion of the breakpoint.

Note: At a breakpoint, UniData stops execution and enters the debugger.

Example
The following statement clears the breakpoint associated with the variable TITLE2,
identified by index_num 1:

!BC 1

To confirm deletion of the breakpoint, execute the BD command to display the break
table:

!BD
***No breakpoints are set
!

 BC 2-27

BD

Syntax
BD [index_num]

Description
The debugger BD command displays the break table, which lists all breakpoints for
the current program. The break table lists the item number for each variable, which
is required by other debugger commands.

Note: At a breakpoint, UniData stops execution and enters the debugger.

Example
In the following example, the debugger BD command displays the break table.
Notice that the ACTIVE.LINE breakpoint is disabled.

!BD
[1] /users/carolw/CTLG/ORDERFORM: BP ORDERFORM Enable
[2] /users/carolw/CTLG/MENU_DRIVER: B ACTIVE.LINE Disable

Related Topics

D

The debugger D command displays both the break and trace tables.

TD

The debugger TD command displays the trace table, which lists all tracepoints for the
current program.
2-28 Using the UniBasic Debugger

BE

Syntax
BE [index_num]

Description
The debugger BE command enables previously disabled breakpoints. index_num is
an entry in the break table. If you do not specify an index entry, UniData enables all
breakpoints.

Note: At a breakpoint, UniData stops execution and enters the debugger.

Example
In the following example, the debugger BD command displays the break table. Then
the statement BE 2 disables the breakpoint identified by item_num 2. Finally, BD is
used again to redisplay the break table, demonstrating that the ACTIVE.LINE break-
point has been enabled.

!BD
[1] /users/carolw/CTLG/ORDERFORM: BP ORDERFORM Enable
[2] /users/carolw/CTLG/MENU_DRIVER: B ACTIVE.LINE Disable
!BE 2
!BD
[1] /users/carolw/CTLG/ORDERFORM: BP ORDERFORM Enable
[2] /users/carolw/CTLG/MENU_DRIVER: B ACTIVE.LINE Enable

Related Topics

BD

The debugger BD command displays the break table.
 BE 2-29

TE

The debugger TE command enables tracepoints.

Breakpoints

For more information about breakpoints, see “Using Breakpoints and Tracepoints” in
Chapter 1, “Using the Debugger.”
2-30 Using the UniBasic Debugger

BG

Syntax
BG label [?condition[-occurrence.option] count [-D variable1 \[,variable2]...

Description
The debugger BG command creates a breakpoint associated with a label.

Parameters
The following table describes each parameter of the syntax.

Parameter Description

label The label for which you want to create a breakpoint.

?condition A condition that must be met to create a breakpoint. For example, if
you specify ?X=7, UniBasic will not create a breakpoint until this
condition is met.

-occurrence.option A second condition that affects when the break will execute:
-A – After the value changes count times.
-E – Each time the value changes count times. For example, if count
is set to 10, the value displays at the tenth, twentieth, thirtieth, and
every tenth time the value changes.
-U – Until the value changes the number of times specified in count.
Occurrence options are mutually exclusive. You can use only one for
each breakpoint.

BG Parameters
 BG 2-31

Example
The following example uses the sample program in Developing UniBasic Applica-
tions. First, the user creates a breakpoint associated with:

Label DISPLAY_DATA
Condition ORDER_NUMBER="941"

Then the user executes the program with debugger N command:

!BG DISPLAY_DATA ?ORDER_NUMBER="941"
!N

Finally, the debugger breaks after displaying the screen and receiving a value of 941
for the ORDER_NUMBER variable:

 ORDER MAINTENANCE

 (Enter Q to quit)
***Broke on command BG DISPLAY_DATA ?ORDER_NUMBER="941"
***DEBUGGER called at line 114 of program BP/_UPDATE_ORDER

count The number of times the variable changes. Used by
occurrence.option.

-D One or more variables are associated with this breakpoint. UniData
displays the value of the associated variable when the label (and, if
applicable, the breakpoint condition) is reached.

variable1... An associated variable(s) to display when the label (and, if applicable,
the breakpoint condition) is reached.

Parameter Description

BG Parameters (continued)
2-32 Using the UniBasic Debugger

BL

Syntax
BL line [?condition[occurrence.option] count [-D variable1 \[,variable2]...

Description
The debugger BL command creates a breakpoint associated with a line.

Note: At a breakpoint, UniData stops execution and enters the debugger.

Parameters
The following table describes each parameter of the syntax.

Parameter Description

line The line for which you want to create a breakpoint.

?condition A condition that must be met to create a breakpoint. For
example, if you specify ?X=7, UniBasic will not create a break-
point until this condition is met.

-occurrence.option Specifies a second condition that affects when the value of the
variable is displayed:
-A – After the value changes count times.
-E – Each time the value changes count times. For example, if
count is set to 10, the value displays at the tenth, twentieth,
thirtieth, and every tenth time the value changes.
-U – Until the value changes the number of times specified in
count.
Occurrence options are mutually exclusive. You can use only
one in any breakpoint.

BL Parameters
 BL 2-33

Example
In the following example, the cataloged program ORDER_UPDATE is executed
from the UniData prompt. The -D option initiates the debugger immediately. In this
example, the user creates a breakpoint on program line 183 by entering the debugger
BL183 command from the debugger prompt, and then executes 200 lines of the
program with the debugger E200 command. The program breaks to the debugger at
line 183 immediately after displaying the ORDER MAINTENANCE screen.

:UPDATE_ORDER -D
!BL183
!E200

 ORDER MAINTENANCE

 (Enter Q to quit)
 Order #:
 Date:
 Time:

 Client #:
 Product #:

 Color:
 Qty:
 Price:
***Broke on command BL183
!

count Provides a count used in occurrence.option.

-D Indicates that one or more variables are associated with this
breakpoint. UniData displays the value of the associated variable
when the line (and, if applicable, the breakpoint condition) is
reached.

variable1... Specifies the associated variable(s) to display when the line
(and, if applicable, the breakpoint condition) is reached.

Parameter Description

BL Parameters (continued)
2-34 Using the UniBasic Debugger

BP

Syntax
BP {directory.name prog.name | cat.name}

Description
The debugger BP command defines a breakpoint associated with a program call.

Note: At a breakpoint, UniData stops execution and enters the debugger.

Parameters
The following table describes each parameter of the syntax.

BP Parameters

Parameter Description

directory.name Name of the directory file where the noncataloged program is stored.

prog.name Name of the noncataloged program.

cat.name Name of the cataloged program.

Example
The following example sets a breakpoint on the program call to program
MENU_DRIVER:

!BP MENU_DRIVER
***Set break point at program '/users/CTLG/MENU_DRIVER'.
!

When execution reaches a call to MENU_DRIVER, the following appears on the
screen:

***Broke on command BP MENU_DRIVER
***DEBUGGER called at line 3 of program /users/CTLG/MENU_DRIVER
 BP 2-35

BU

Syntax
BU [index_num]

Description
The debugger BU command disables the breakpoints identified by an index entry in
the break table. If you do not specify the index entry number, the debugger disables
all index entries in the table. Disabled breakpoints remain in the break table and can
be enabled with the BE command.

Example
In the following example, the first line of a BU statement disables the breakpoint for
the variable ACTIVE.LINE. The user executes the BD command to display the break
table and the status of breakpoints.

!BU 2
!BD
[1] /users/carolw/CTLG/ORDERFORM: BP ORDERFORM Enable
[2] /users/carolw/CTLG/MENU_DRIVER: B ACTIVE.LINE Disable
!

2-36 Using the UniBasic Debugger

D

Syntax
D

Description
The debugger D command lists all breakpoints and tracepoints currently set for this
debugging session.

Example
The following example displays the four breakpoints currently set. For each entry in
the table, UniData lists:

An index number that you can reference in breakpoint and tracepoint
commands (index_num).
The program for which the breakpoint is specified.
The commands and arguments used with the breakpoint.
Whether the entry is currently enabled or disabled.

!D
[1] /users/CTLG/MENU_DRIVER: B ACTIVE.LINE -A 2 Enable
[2] /users/CTLG/MENU_DRIVER: B PREV.LINE -A 2 Disable
[3] /users/CTLG/MENU_DRIVER: B MAX.MENU.AMC -A 2 Enable
[4] /users/CTLG/MENU_DRIVER: B MENU.ID Enable
!

 D 2-37

The following table describes the values in line [2] of the D command output.

D Command Example Description

Value Description

2 An index number that identifies this breakpoint. It is used in
other debugger commands (index_num).

/users/CTLG/MENU
_DRIVER

The cataloged program is MENU_DRIVER.

B A breakpoint is set.

PREV.LINE The breakpoint is associated with the variable PREV.LINE.

-A 2 The contents of the variable will be displayed every two times it
changes.

Disabled This breakpoint has been disabled.

Related Topics

BD

The debugger BD command displays breakpoints and their status.

BT

The debugger BT command displays tracepoints and their status.
2-38 Using the UniBasic Debugger

DEBUG

Syntax
DEBUG

Description
The UniBasic DEBUG command stops program execution and turns control over to
the interactive UniBasic debugger. The debugger prompt (!) is displayed. Pressing
BREAK also gives control to the debugger.

To use the DEBUG command to display the contents of variables, you must compile
the program with the D option.

Note: The setting of UDT.OPTIONS 14 determines where to return control after
exiting a UniBasic program when you are using the UniBasic debugger and enter
ABORT or END. For information about UDT.OPTIONS, see the UDT.OPTIONS
Commands Reference.

When you enter the debugger, a message similar to the following displays, and the
cursor is placed at the debugger prompt:

DEBUGGER called before line 1 of program BP/TEST
!

Related Topics

ABORT

The debugger ABORT command terminates the program in progress, and then
returns the cursor to the ECL prompt.
 DEBUG 2-39

DI

Syntax
DI variable

Description
The debugger DI command displays database system connection information for
open servers, including user name, application name, and server name. variable is the
name assigned to the server in the program being debugged.
2-40 Using the UniBasic Debugger

DL

Syntax
DL [var | select.list]

Description
The debugger DL command displays the specified select list.

Note: In BASICTYPE U, use a select list numbered from 0 through 9. In BASICTYPE
P, use the list name.

Parameters
The following table describes each parameter of the syntax.

DL Parameters

Parameter Description

var The name of the stack to display (P mode only).

select.list The select list number (U mode only).
 DL 2-41

E

Syntax
E [n] [R] [m]

Description
The debugger E command executes source code lines based on the number of lines
and beginning line specified. It executes the specified number of lines unless it
encounters a breakpoint or the program ends. The E command functions like the
debugger N command except that it counts lines in external subroutines it executes.

Note: At a breakpoint, UniData stops execution and the cursor returns to the
debugger prompt.

Parameters
The following table describes each parameter of the syntax.

E Parameters

Paramete
r Description

n The number of lines to execute before the cursor returns to the debugger
prompt.
The UniBasic debugger does not count comment lines.

R Indicates that, after the E command executes n lines, an additional n lines will
execute when the user presses ENTER. This occurs each time the user presses
ENTER. If the user does not press ENTER, but issues a different command,
the E command stops executing.

m The line at which to begin execution. The default is the current line.

Note: The blank space between the E command and the n parameter is optional. You
must use spaces between the n, R, and m parameters.
2-42 Using the UniBasic Debugger

Examples
The following example uses the sample program in Developing UniBasic Applica-
tions. The debugger E command executes 100 lines beginning with line 20 (GOSUB
INITIALIZE).

!E 100 20

 ORDER MAINTENANCE

 (Enter Q to quit)
 Order #:
 Date:
 Time:

 Client #:
 Product #:

 Color:
 Qty:
 Price:

In the following example, UniBasic executes 30 lines of the MENU_DRIVER
program beginning at the current line. Notice that the debugger prints the last line of
the main menu and the prompt for user input. The debugger is called after the user
presses ENTER.

!E30 Order Information

 Down,Up,Help or ESC to Exit, RETURN to Select Process!
 E 2-43

EL

Syntax
EL [debug-name]

Description
The debugger EL command loads breakpoints, tracepoints, and watches, along with
their status information, from the _DEBUG_ file. Use the debugname parameter to
load information for a debug environment you previously saved by using the
debugger ES command.

The name you specify for debug_name must match a record ID in the _DEBUG_ file.
If you did not specify debug_name when you saved the environment you now want
to load, the record ID in _DEBUG_ is an empty string. In this case, do not specify
debug_name in the EL command.

Note: The current program must declare the variables included in the loading debug
environment. Otherwise, the EL command issues a syntax error message.

Related Topics

ES
The debugger ES command saves breakpoints, tracepoints, and watches, along with
their status information, to the _DEBUG_ file.
2-44 Using the UniBasic Debugger

END

Syntax
END

Description
The debugger END command ends the debugging session. UniBasic executes the
ON.ABORT paragraph if it is included in the UniBasic program. Otherwise, the
cursor returns to the ECL prompt.

By turning UDT.OPTIONS 14 off, you can make UniBasic ignore the ON.ABORT
paragraph and return the cursor to the ECL prompt.

For more information about UDT.OPTIONS, see the UDT.OPTIONS Commands
Reference. For information about paragraphs, ON.ABORT, and CLEAR.ONABORT,
see the UniData Commands Reference. For instructions about using the UniBasic
Debugger, see Chapter 1, “Using the Debugger.”

Related Topics

ABORT
The debugger ABORT command also terminates a debugging session. ABORT
executes the ON.ABORT paragraph if included in the UniBasic program. If an
ON.ABORT paragraph is not included, UniBasic returns the cursor to the ECL
prompt.
 END 2-45

ES

Syntax
ES [debug-name]

Description
The debugger ES command saves breakpoints, tracepoints, and watches, along with
their status information, to the _DEBUG_ file. To save information for the current
debug environment, use the debug-name parameter. The name you specify for this
parameter becomes the record ID in the _DEBUG_ file for the current debug
environment. If you do not specify debug_name, the record ID is set to an empty
string by default.

Related Topics

EL

The debugger EL command loads breakpoints, tracepoints, and watches, along with
their status information, from the _DEBUG_ file.
2-46 Using the UniBasic Debugger

EXEC

Syntax
EXEC ECL.command

Description
The debugger EXEC command executes an ECL command from the debugger.

Example
In the following example, UniData executes the ECL DATE command:

!EXEC DATE
***Executing UniData command: DATE
Thu Sep 10 17:48:09 CDT 199
***DEBUGGER called at line 53 of program BP/_TEST.4
!

 EXEC 2-47

FI

Syntax
FI variable

Description
The debugger FI command displays file information, including the type, name, path,
index, and permissions for the file cited in the variable.

Example
In the following example, a user requests file information about the demo database
file CLIENTS, which is opened to the variable CLIENT_FILE:

!FI CLIENT_FILE
'CLIENT_FILE' is a static hash file.
 file_name=CLIENTS
 path_name=/users/carolw/demo/CLIENTS
 hash_algorithm=0
 modulo=19
 group_size=0
 block_size=1024
 index=no
 privilege=read:write
!

2-48 Using the UniBasic Debugger

G

Syntax
G [line]

Description
The debugger G command begins execution with the specified line and continues
until the end of the program. The default beginning is the current line. This command
executes all breakpoints and tracepoints. You cannot specify the number of lines to
process.
 G 2-49

H

Syntax
H [topic | debugger.command]

Description
The debugger H command displays help for the debugger. The default (no param-
eters) displays an alphabetic summary of the debugger commands.

Parameters
The following table describes each parameter of the syntax.

H Parameters

Parameter Description

topic A debugger topic for which you need help.

debugger.command A debugger command or topic for which you need help.

Example
The following example demonstrates getting help on the debugger ABORT
command:

!H ABORT
ABORT Ends the program and returns to ECL level.
!

2-50 Using the UniBasic Debugger

L

Syntax
L [s[,e]]

Description
The debugger L command lists source code lines surrounding the current line.

Parameters
The following table describes each parameter of the syntax.

L Parameters

Paramete
r Description

s The first line to list. If you do not specify s, the debugger lists the ten lines
surrounding the current line.

e The last line to list. If you do not specify s, but not e, the debugger lists 10 lines
following s.

Example
In the following example, the programmer executes the $ command to confirm the
current line and program:

!$
***At line 3 of program /users/carolw/CTLG/MENU_DRIVER
 L 2-51

Then the programmer executes the debugger L command to list lines 1 through 10 in
program MENU_DRIVER:

!L1,10
[1] $BASICTYPE 'U'
[2] *
(3) SENTENCE = TRIM(UPCASE(@SENTENCE))
[4] VERBOSE.FLAG = (FIELD(SENTENCE, ' ', 3) = "VERBOSE")
[5] PROMPT ""
[6] *
[7] OPEN "UCONV_MENUS" TO MENU.FD ELSE STOP "Can't open
UCONV_MENUS file"
[8] OPEN "UCONV_MENUS_HELP" TO MENU.HELP.FD ELSE STOP
"Can't open UCONV_MENUS_HELP file"
[9] EQU MENU.TEXT TO 1
[10] EQU MENU.ACTION TO 2
2-52 Using the UniBasic Debugger

LA

Syntax
LA

Description
The debugger LA command attaches a terminal line for debug input/output. The
debugger attaches the line set by the ECL SETDEBUGLINE command or by the
debugger LS command.

This command is used in dual-terminal debugging. For instructions about this
process, see Chapter 1, “Using the Debugger.”

Note: This debugger command is the same as the ECL DEBUGLINE.ATT command.
 LA 2-53

LD

Syntax
LD

Description
The debugger LD command detaches the debug terminal line. The debug terminal
line is the one set by the ECL SETDEBUGLINE command or the debugger LS
command.

After detaching the debug terminal line, use the LU command to release it.

This command is used in dual-terminal debugging. For instructions about this
process, see Chapter 1, “Using the Debugger.”

Note: This debugger command is the same as the ECL DEBUGLINE.ATT command.
2-54 Using the UniBasic Debugger

LI

Syntax
LI {file.name [recordID] | resource.num}

Description
The debugger LI command displays record lock status and type.

Parameters
The following table describes each parameter of the syntax.

LI Parameters

Parameter Description

file.name Name of the file to check. (Not the file variable name in the program.)

recordID ID of the record to check (optional).

resource.num Resource number. For more information about the UniBasic LOCK
command, see the UniBasic Commands Reference. For more information
about assigning resource numbers, see Developing UniBasic
Applications.

Example
The following example checks the file CLIENTS for locks:

!LI CLIENTS
not locked
 LI 2-55

LS

Syntax
LS absolute.pathname (for UNIX only)

LS hostname:portnumber (for Windows platforms only)

Description
The debugger LS command sets the debug terminal line.

For UNIX, absolute.pathname is the full path to the debugging terminal, including
the device name (for example, /dev/pty/ttyv6).

For Windows NT or Windows 2000, hostname:portnumber is the host address (host
name and port number separated by a colon) of the debugging terminal. The host
name can be a symbolic name (for example, engine) or a literal name (for example,
claireg.ibm.com). The host address can be an IP address that includes a port number
at the end, all of which must be enclosed in quotation marks (for example,
"192.245.120.110:4294").

After setting the line, attach it with the debugger LA command or the ECL
DEBUGLINE.ATT command.

This command is used in dual-terminal debugging. For instructions about this
process, see Chapter 1, “Using the Debugger.”
2-56 Using the UniBasic Debugger

LU

Syntax
LU

Description
The debugger LU command releases the debug terminal line. The line released is the
one set by the ECL SETDEBUGLINE command or by the debugger LS command.

This command is used in dual-terminal debugging. For instructions about this
process, see Chapter 1, “Using the Debugger.”
 LU 2-57

N

Syntax
N [n] [R] [m]

Description
The debugger N command executes source code lines based on the number of lines
and beginning line you specify. It executes the specified number of lines unless it
encounters a breakpoint, or the program ends. The N command functions like the
debugger E command, except it does not count lines in external subroutines it
executes. In this case, the entire subroutine counts as one line.

Note: At a breakpoint, UniData stops execution and the cursor returns to the
debugger prompt.

Parameters
The following table describes each parameter of the syntax.

N Parameters

Paramete
r Description

n The number of lines to execute before the cursor returns to the debugger
prompt.
The UniBasic debugger does not count comment lines.

R Indicates that, after the E command executes n lines, an additional n lines will
execute when the user presses ENTER. This occurs each time the user presses
ENTER. If the user does not press ENTER, but issues a different command,
the E command stops executing.

m The line at which to begin execution. The default is the current line.

Note: The blank space between the N command and the n parameter is optional. You
must use spaces between the n, R, and m parameters.
2-58 Using the UniBasic Debugger

Example
In the following example, the debugger N command executes 100 lines of code
beginning with line 48:

!N 100 48
 N 2-59

OUT

Syntax
OUT

Description
The debugger OUT command executes the subroutine you are debugging until
control passes back to a calling program.

Example
In the following example, a program calls the CALLED.PGM subroutine:

PRINT "Enter operation to perform: (1)add, (2)delete, (3)update :
";INPUT operation
CALL CALLED.PGM(operation,ret.val)
PRINT "Operation completed: ":ret.val

The following example shows the CALLED.PGM subroutine:

SUBROUTINE CALLED.PGM(operation,ret.val)
BEGIN CASE
 CASE operation = 1
 ret.val = "Record added."
 CASE operation = 2
 ret.val = "Record deleted."
 CASE operation = 3
 ret.val = "Record updated."
END CASE
RETURN

In the following example, the programmer executes the PP command to exit to the
debugger when the external subroutine is called:

!PP CALLED.PGM
Enter operation to perform: (1)add, (2)delete, (3)update :
?1
***Broke in /users/ud_71/sys/CTLG/c/CALLED.PGM at line 2
!

2-60 Using the UniBasic Debugger

Then the programmer executes the OUT command to return to the debugger when
control returns to the calling program:

!OUT
***DEBUGGER called at line 2 of program BP/_sub.call
!

 OUT 2-61

P

Syntax
P

Description
The debugger P command suppresses program output to the display terminal.

This command is used in dual-terminal debugging. For instructions about this
process, see Chapter 1, “Using the Debugger.”
2-62 Using the UniBasic Debugger

PG

Syntax
PG label

Description
The debugger PG command causes the program to proceed to the label you specify.

Example
In the following example, the programmer uses the PG command to make the
program break out of executing the program and proceed to the OPEN_FILES label.
The debugger L command is executed to show the program lines surrounding the
label.

!PG OPEN_FILES
***Broke in BP/_UPDATE_ORDER at line 253
!L
[249] END
[250] RETURN
[251]
[252]
(253) OPEN_FILES:
[254] OPEN "CLIENTS" TO CLIENT_FILE ELSE
[255] MESSAGE = "The CLIENT file could not be opened."
[256] CALL DISPLAY_MESSAGE(MESSAGE)
[257] STOP
[258] END
!

 PG 2-63

PL

Syntax
PL line

Description
The debugger PL command executes to the line you designate. When the program
arrives at that line, execution stops. line cannot be a comment line.

Example
In the following example, the PL command is executed from line 253 (the program
label OPEN_FILES). Program execution continues until control is returned to Main
Logic, line 20. (The L command shows the line surrounding line 20).

!PL20
***Broke in BP/_UPDATE_ORDER at line 20
!L
[16] GOSUB OPEN_FILES
[17]
[18] *-------------- Main Logic -----------------------------
[19]
(20) GOSUB INITIALIZE
[21]
[22] LOOP
[23] GOSUB DISPLAY_SCREEN
[24] GOSUB GET_ORDER_NUMBER
[25] UNTIL ORDER_NUMBER[1,1] = 'Q'
!

2-64 Using the UniBasic Debugger

PP

Syntax
PP [file.name prog.name | cat.name]

Description
The debugger PP command executes until the program calls another program or
catalog.

Parameters
The following table describes each parameter of the syntax.

PP Parameters

Parameter Description

file.name The name of the directory file where the noncataloged program is stored.

prog.name The name of the noncataloged program.

cat.name The name of the cataloged program.

Example
In the following example, a program calls the CALLED.PGM subroutine:

PRINT "Enter operation to perform: (1)add, (2)delete, (3)update :
";INPUT operation
CALL CALLED.PGM(operation,ret.val)
PRINT "Operation completed: ":ret.val
END
 PP 2-65

The following example shows the CALLED.PGM subroutine:

SUBROUTINE CALLED.PGM(operation,ret.val)
BEGIN CASE
 CASE operation = 1
 ret.val = "Record added."
 CASE operation = 2
 ret.val = "Record deleted."
 CASE operation = 3
 ret.val = "Record updated."
END CASE
RETURN

The programmer executes the -D option, which causes the program to break to the
debugger immediately. Then the programmer executes the PP command, which
makes the program return to the debugger when the external subroutine is called.

!PP CALLED.PGM
Enter operation to perform: (1)add, (2)delete, (3)update :
?1
***Broke in /users/ud_71/sys/CTLG/c/CALLED.PGM at line 2
!

In the following example, the programmer executes the PP command to make the
program stop when it calls TEST.SUB.2:

!PP TEST.SUB.2
2-66 Using the UniBasic Debugger

SF

Syntax
SF variable [-R][filename | DICT file.name | absolutepathname]

Description
The debugger SF command opens the file file.name to variable.

You must use a variable name that is used in the compiled program. If you do not, the
following error message results because the variable name is not listed in the symbol
table:

Variable 'variable' is not found in the current
program/subroutine.

Parameters
The following table describes each parameter of the syntax.

SF Parameters

Parameter Description

variable The name of the file variable.

-R Sets the file to read-only mode. The default is read-write.

DICT Indicates that the file being opened is a UniData dictionary file.

file.name Can be one of the following:
The nonUniData file being opened.
The dictionary file name if a UniData dictionary file is being opened.

absolutepathname The operating system path name to the non-UniData file, including
the file name.
 SF 2-67

Examples
In the following example, the user attempts to open the INVENTORY file in the
demo database to the file variable inventory.carol. The subsequent error message
results because this variable is not in the symbol table for the program being
debugged.

!SF inventory.sam INVENTORY
***Variable 'inventory.sam' is not found in the current
program/subroutine.

The following command statement is successful because the variable used in the
program is used:

!SF INVENTORY.FILE INVENTORY
!

2-68 Using the UniBasic Debugger

SL

Syntax
SL select.list.no [DICT | OS] file.name

Description
The debugger SL command selects record IDs in file file.name to the designated
SELECT list number.

Note: The debugger SL command is equivalent to the OSOPEN statement in
UniBasic.

Parameters
The following table describes each parameter of the syntax.

SL Parameters

Parameter Description

select.list.no The number of the select list to contain the record IDs.

DICT Indicator that the file being accessed is a UniData hashed file defined by a
UniData dictionary file.

OS Indicator that the file being accessed is not a UniData hashed file.

file.name The name of the file from which to read. This must be the actual filename,
not the file variable. The file does not need to be accessed in the current
program.
 SL 2-69

Examples
In the following example, the SL command selects record IDs in the demonstration
database file INVENTORY to select list 1:

!SL 1 INVENTORY

In the next example, the SL command selects record IDs in TEST.FILE to SELECT
LIST 0 and selects record IDs in DICT TEST.FILE to SELECT LIST 1:

!SL 0 TEST.FILE
!SL 1 DICT TEST.FILE
2-70 Using the UniBasic Debugger

SO

Syntax
SO file.variable [-R] os.file.path

Description
The debugger SO command opens the operating system os.file.path to file.variable.

Parameters
The following table describes each parameter of the syntax.

SO Parameters

Parameter Description

file.variable The file variable used in this program for the file to be opened.

-R Indicator that the file is to be opened in read-only mode.

os.file.path The operating system path to the file to be opened.

Example
In the following example, the SO commands open Mail/mymail to OS.FILE in read-
only mode:

!SO OS.FILE -R Mail/mymail
 SO 2-71

SS

Syntax
SS file.variable [-R] file.name recordID

Description
The debugger SS command opens the sequential file file.name recordID to
file.variable.

This debugger command is equivalent to the OPENSEQ statement in UniBasic.

Parameters
The following table describes each parameter of the syntax.

SS Parameters

Parameter Description

file.variable The variable to store the record in this program.

-R Indicator that the file is to be opened in read-only mode.

file.name The name of the file being opened.

recordID The primary key of the record saved to file.variable.

Example
In the following example, UniBasic opens the sequential file with recordID
TEST.SUB.1 in file.name BP to file.variable SEQ.FILE in read-only mode:

!SS SEQ.FILE -R BP TEST.SUB.1
2-72 Using the UniBasic Debugger

SV

Syntax
SV variable "string"

Description
The debugger SV command changes the value of a variable to the new value
provided in "string." UniData does not display the original value of variable.

Parameters
The following table describes each parameter of the syntax.

SV Parameters

Parameter Description

variable The name of the variable to be changed.

"string" The value to assign to the variable.

Example
In the following example, the variable ACTIVE.LINE is changed to 1:

!SV ACTIVE.LINE "1"
!

 SS 2-73

SZ

Syntax
SZ variable

Description
The debugger SZ command displays the size of a variable.

Example
In the following example, the SL command shows that the size of the variable
MENU.ID is nine characters:

!SZ MENU.ID
size of 'MENU.ID' = 9
2-74 Using the UniBasic Debugger

T

Syntax
T variable [?condition] [occurrence.option] count [-D variable1 [,variable2]...

Description
The debugger T command creates a new tracepoint. You can display variables at
specific points in program execution or when the values of the variables change. You
also can include additional conditions that must be satisfied before the tracepoint is
executed.

Note: At a tracepoint, the debugger displays variable values without interrupting
program execution.

Parameters
The following table describes each parameter of the syntax.

Parameter Description

variable The variable for which you want to create a tracepoint.

?condition A condition that must be met to create a tracepoint. For example, if
you specify ?X=7, UniBasic will not create a tracepoint until this
condition is met.

-occurrence.option A second condition that affects when the value of the variable will be
displayed:
-A – After the value changes count times.
-E – Each time the value changes count times. For example, if count
is set to 10, the value displays at the tenth, twentieth, thirtieth, and
every tenth time the value changes.
-U – Until the value changes the number of times specified in count.
Occurrence options are mutually exclusive. You can use only one in
any tracepoint.

T Parameters
 T 2-75

Example
In the following example, a trace is placed on the variable ACTIVE.LINE:

!T ACTIVE.LINE

The display of the value in the variable interrupts display of program output (if dual-
terminal debugging is not used).

count Number of times the variable changes. Used in occurrence.option.

-D Indicates that one or more variables are associated with this trace-
point. The system displays the value of the associated variable when
the primary variable (and, if applicable, the tracepoint condition) is
reached.

variable1... Associated variable(s) that will display when the primary variable
(and, if applicable, the tracepoint condition) is reached.

Parameter Description

T Parameters (continued)
2-76 Using the UniBasic Debugger

TC

Syntax
TC [index_num]

Description
The debugger TC command clears one or all tracepoints. To clear a particular trace-
point, include index_num, an entry for a tracepoint in the trace table. If you do not
specify index_num, UniData enables all tracepoints.

Use the debugger D command to list breakpoints, tracepoints, and their index
numbers.

Note: At a tracepoint, the debugger displays variable values without interrupting
program execution.

Example
In the following example, the debugger TD command displays the trace table, and
then the TC command deletes the tracepoint by using the index number listed in the
trace table. Finally, the TD command displays the trace table, which does not exist.

!TD
[1] BP/_UPDATE_ORDER: T COMMAND Enable
!TC 1
!TD
***No tracepoints are set
!

Related Topics

BC

The debugger BC command clears breakpoints.
 TC 2-77

TD

The debugger BD command displays the trace table.

Tracepoints

For more information about tracepoints, see “Using Breakpoints and Tracepoints” in
Chapter 1, “Using the Debugger.”
2-78 Using the UniBasic Debugger

TD

Syntax
TD

Description
The debugger TD command displays the trace table, which lists all tracepoints, their
status, and their index numbers. The trace table also provides the index number that
is used in other debugger commands.

Note: At a tracepoint, the debugger displays variable values without interrupting
program execution.

For a complete description of the trace table, see the debugger D command.

Example
The following example demonstrates the TD command. In this example, two trace-
points are set for the program GADGETS, which resides in the directory
NEWDEMO. The first was created by the debugger T command, and, therefore, is
associated with a variable (INTROPROMPT). The second was created with the
debugger TG command, and, therefore, is associated with a label (CHECKINPUT).

!TD
[1] NEWDEMO/_GADGETS: T INTROPROMPT Enable
[2] NEWDEMO/_GADGETS: TG CHECKINPUT Enable

Related Topics

BD

The debugger BD command displays the break table.
 TD 2-79

Tracepoints

For more information about tracepoints, see “Using Breakpoints and Tracepoints” in
Chapter 1, “Using the Debugger.”
2-80 Using the UniBasic Debugger

TE

Syntax
TE [index_num]

Description
The debugger TE command enables one or all previously disabled tracepoints. To
enable a particular tracepoint, include index_num, an entry for a tracepoint in the
trace table. If you do not specify index_num, UniData enables all tracepoints.

Use the debugger D command to list breakpoints, tracepoints, and their index
numbers.

Note: At a tracepoint, the debugger displays variable values without interrupting
program execution.

Example
In the following example, the debugger TD command displays the trace table,
showing a disabled tracepoint on the COMMAND variable. TE enables the trace-
point, using the index number from the trace table. Finally, TD again displays the
trace table, this time showing an enabled tracepoint for the COMMAND variable.

!TD
[1] BP/_UPDATE_ORDER: T COMMAND Disabled
!TE 1
!TD
[1] BP/_UPDATE_ORDER: T COMMAND Enable

Related Topics

TD

The debugger TD command displays the trace table.
 TE 2-81

BE

The debugger BE command enables breakpoints.

Tracepoints

For more information about tracepoints, see “Using Breakpoints and Tracepoints” in
Chapter 1, “Using the Debugger.”
2-82 Using the UniBasic Debugger

TG

Syntax
TG label [?condition[occurrence.option] count [-D variable1 \[,variable2]...

Description
The debugger TG command creates a tracepoint associated with a label.

At a tracepoint, the debugger displays variable values without interrupting program
execution.

Parameters
The following table describes each parameter of the syntax.

Parameter Description

label The label for which you want to create a tracepoint.

?condition A condition that must be met to create a tracepoint. For example,
if you specify ?X=7, UniBasic will not create a tracepoint until
this condition is met.

-occurrence.option Specifies a second condition that affects when the value of the
variable will be displayed:
-A – After the value changes count times.
-E – Each time the value changes count times. For example, if
count is set to 10, the value displays at the tenth, twentieth,
thirtieth, and every tenth time the value changes.
-U – Until the value changes the number of times specified in
count.
Occurrence options are mutually exclusive. You can use only
one in any tracepoint.

TG Parameters
 TG 2-83

Example
In the following example, a tracepoint is associated with the label DISPLAY_DATA.
First, the ORDER MAINTENANCE screen is displayed. The user responds with an
order number. Then the debugger prints a message when the UPDATE_ORDER label
is reached.

!TG DISPLAY_DATA

 ORDER MAINTENANCE

 (Enter Q to quit)
 Order #: 912
***In BP/_UPDATE_ORDER at line 114 label 'DISPLAY_DATA' reached
 Time:

 Client #:
 Product #:

 Color:
 Qty:
 Price:

 (Record Does Not Exist)
 Press the (Return) key.

count Provides a count used in occurrence.option.

-D Indicates that one or more variables are associated with this
tracepoint. The system displays the value of the associated
variable when the primary variable (and, if applicable, the trace-
point condition) is reached.

variable1... Specifies the associated variable(s) to display when the primary
variable (and, if applicable, the tracepoint condition) is reached.

Parameter Description

TG Parameters (continued)
2-84 Using the UniBasic Debugger

Related Topics

BG

The debugger BG command creates a breakpoint associated with a label.

Tracepoints

For more information about tracepoints, see “Using Breakpoints and Tracepoints” in
Chapter 1, “Using the Debugger.”
 TG 2-85

TL

Syntax
TL line [?condition[occurrence.option] count [-D variable1 \[,variable2]...

Description
The debugger TL command creates a tracepoint associated with a line.

Note: At a tracepoint, the debugger displays variable values without interrupting
program execution.

Parameters
The following table describes each parameter of the syntax.

Parameter Description

line The line for which you want to create a tracepoint.

?condition A condition that must be met to create a tracepoint. For example, if
you specify ?X=7, UniBasic will not create a tracepoint until this
condition is met.

-occurrence.option Specifies a second condition that affects when the value of the
variable will be displayed:
-A – After the value changes count times.
-E – Each time the value changes count times. For example, if count
is set to 10, the value displays at the tenth, twentieth, thirtieth, and
every tenth time the value changes.
-U – Until the value changes the number of times specified in count.
Occurrence options are mutually exclusive. You can use only one in
any tracepoint.

TL Parameters
2-86 Using the UniBasic Debugger

Example
In the following example, a tracepoint is associated with line 173 (the line that
contains the RETURN from the subroutine DISPLAY_SCREEN).

!TL 183

When this line is executed, a message displays on the screen:

 ORDER MAINTENANCE

 (Enter Q to quit)
 Order #:
 Date:
 Time:

 Client #:
 Product #:

 Color:
 Qty:
 Price:
***In BP/_UPDATE_ORDER at line 183

Related Topics

BL

The debugger BL command creates a breakpoint associated with a line.

count Provides a count used in occurrence.option.

-D Indicates that one or more variables are associated with this trace-
point. UniData displays the value of the associated variable when
the primary variable (and, if applicable, the tracepoint condition) is
reached.

variable1... Specifies the associated variable(s) to display when the primary
variable (and, if applicable, the tracepoint condition) is reached.

Parameter Description

TL Parameters (continued)
 TL 2-87

Tracepoints

For more information about tracepoints, see “Using Breakpoints and Tracepoints” in
Chapter 1, “Using the Debugger.”
2-88 Using the UniBasic Debugger

TP

Syntax
TP {file.name prog.name | cat.name}

Description
The debugger TP command defines a tracepoint associated with a program call.

Note: At a tracepoint, the debugger displays variable values without interrupting
program execution.

Parameters
The following table describes each parameter of the syntax.

TP Parameters

Parameter Description

file.name Name of the directory file where the noncataloged program is stored.

prog.name Name of the noncataloged program.

cat.name Name of the cataloged program.

Example
In the following example, a program calls the CALLED.PGM subroutine:

PRINT "Enter operation to perform: (1)add, (2)delete, (3)update :
";INPUT operation
CALL CALLED.PGM(operation,ret.val)
PRINT "Operation completed: ":ret.val
END
 TP 2-89

The following example shows the CALLED.PGM subroutine:

SUBROUTINE CALLED.PGM(operation,ret.val)
BEGIN CASE
 CASE operation = 1
 ret.val = "Record added."
 CASE operation = 2
 ret.val = "Record deleted."
 CASE operation = 3
 ret.val = "Record updated."
END CASE
RETURN

In the following example, the programmer executes the TP command to establish a
breakpoint when the CALLED.PGM subroutine is called:

!TP CALLED.PGM
***Trace program '/users/ud_71/sys/CTLG/c/CALLED.PGM'.
!

2-90 Using the UniBasic Debugger

TU

Syntax
TU [index_num]

Description
The debugger TU command disables the tracepoint identified by an index entry in
the break table. If you do not designate the index entry number, the debugger disables
all index entries in the table. Disabled tracepoints remain in the trace table and can be
enabled with the TE command.

Example
In the following example, the first line, a TD command, displays the trace table. The
next debugger command, TU, disables the breakpoint associated with the CHECK-
INPUT label. The user in this example then executes the TD command to display the
trace table, confirming that the tracepoint is disabled.

!TD
[1] NEWDEMO/_GADGETS: T INTROPROMPT Enable
[2] NEWDEMO/_GADGETS: TG CHECKINPUT Enable
!TU 2
!TD
[1] NEWDEMO/_GADGETS: T INTROPROMPT Enable
[2] NEWDEMO/_GADGETS: TG CHECKINPUT Disable

Related Topics

Tracepoints

For more information about tracepoints, see “Using Breakpoints and Tracepoints” in
Chapter 1, “Using the Debugger.”
 TU 2-91

V

Syntax
V

Description

The debugger V command enables or disables visual mode. In visual mode, the
debugger displays each line of code before it executes. You could find this command
especially helpful when using the E command to execute a specific number of lines.

Note: This command is most useful with dual-terminal debugging.

Related Topics

Tracepoints

For more information about dual-terminal debugging, see Chapter 1, “Using the
Debugger.”
2-92 Using the UniBasic Debugger

W

Syntax
W variable1 [,variable2]...

Description
The debugger W command sets watch on one or more variables.You can place an
unlimited number of variables under a single watch command.

Tip: The debugger displays the value of watched variables whenever their values
change without interrupting program execution. Setting watch on a variable has no
effect on breakpoints or tracepoints associated with that or any other variable.

Parameters
The following table describes each parameter of the syntax.

W Parameters

Parameter Description

variable1 The variable to display when its value changes.

variable2 Another variable to display when its value changes.

Example
In the following example, a program calls the CALLED.PGM subroutine:

PRINT "Enter operation to perform: (1)add, (2)delete, (3)update :
";INPUT operation
CALL CALLED.PGM(operation,ret.val)
PRINT "Operation completed: ":ret.val
END
 W 2-93

The following example shows the CALLED.PGM subroutine:

SUBROUTINE CALLED.PGM(operation,ret.val)
BEGIN CASE
 CASE operation = 1
 ret.val = "Record added."
 CASE operation = 2
 ret.val = "Record deleted."
 CASE operation = 3
 ret.val = "Record updated."
END CASE
RETURN

The following example shows the symbol table for the preceding program:

!*
Program Name : BP/_sub.call
 Name Type
 operation variable
 ret.val variable

Watch is set on the two variables, and the program is executed with the debugger N
command. The variables are displayed as the program executes.

!W operation,ret.val
!N
The following displays:
Enter operation to perform: (1)add, (2)delete, (3)update :
?1
***In BP/_sub.call at line 1 variable(s) changed:
operation = 1
***CALLED.PGM (/users/ud_71/sys/CTLG/c/CALLED.PGM) called
***In BP/_sub.call at line 2 variable(s) changed:
ret.val = Record added.
Operation completed: Record added.
:

2-94 Using the UniBasic Debugger

WC

Syntax
WC [variable1 [,variable2]...]

Description
The debugger WC command clears the watch on specified variables. The default for
this command is to clear all variables being watched.

Tip: The debugger displays the value of watched variables whenever their values
change without interrupting program execution. Setting watch on a variable has no
effect on breakpoints or tracepoints associated with that or any other variable.

Parameters
The following table describes each parameter of the syntax.

WC Parameters

Parameter Description

variable1 The variable for which to clear the watch.

variable2 Another variable for which to clear the watch.
 WC 2-95

WD

Syntax
WD

Description
The debugger WD command displays all variables under watch.

Tip: The debugger displays the value of watched variables whenever their values
change without interrupting program execution. Setting watch on a variable has no
effect on breakpoints or tracepoints associated with that or any other variable.

Example
In the following example, the WD command displays all watched variables:

!WD
[1] BP/_TEST: I
[2] BP/_TEST: TEST.ARRAY(2)
2-96 Using the UniBasic Debugger

Z

Syntax
Z {file.name prog.name | cat.name}

Description
The debugger Z command loads the symbol table, which is required to run the
debugger.

Parameters
The following table describes each parameter of the syntax.

Z Parameters

Parameter Description

file.name The name of the directory file where the noncataloged program is stored.

prog.name The name of the noncataloged program.

cat.name The name of the cataloged program.
 Z 2-97

	Using the Debugger
	In This Chapter
	Getting Started
	Locating the Source Code
	Linking the Symbol Table
	BASIC Options
	Loading the Symbol Table
	Displaying the Symbol Table
	Invoking the Debugger
	Getting Debugger Help
	Exiting from the Debugger

	Displaying Program Code and Output
	Querying the Debugger
	Printing and Changing Variables
	Watching Variables Change
	Using Breakpoints and Tracepoints
	What Are Breakpoints?
	What Are Tracepoints?
	What You Can Trace and Break On
	Breakpoint and Tracepoint Commands
	Examples

	Saving and Loading the Debug Environment
	Accessing Data in Files
	Debugger Open File Commands
	Accessing a UniData File

	Executing Programs from the Debugger
	Accessing ECL and the Operating System
	Colon
	EXEC Command
	! (Bang) Command

	Using Dual-Terminal Debugging
	Initiating Dual-Terminal Debugging (UNIX)
	Initiating Dual-Terminal Debugging (Windows Platforms)
	Ending Dual-Terminal Debugging

	Debugger Commands Reference
	Elements of Syntax Statements
	Summary of Debugger Commands
	Display Variables and Break to Debugger
	Display and Change
	Execute
	End
	External Execute
	Open File
	Dual-Terminal Debugging
	Utilities

	!
	$
	:
	?
	*
	\array
	\variable
	ABORT
	B
	BASIC
	BC
	BD
	BE
	BG
	BL
	BP
	BU
	D
	DEBUG
	DI
	DL
	E
	EL
	END
	ES
	EXEC
	FI
	G
	H
	L
	LA
	LD
	LI
	LS
	LU
	N
	OUT
	P
	PG
	PL
	PP
	SF
	SL
	SO
	SS
	SZ
	T
	TC
	TD
	TE
	TG
	TL
	TP
	TU
	V
	W
	WC
	WD
	Z

