[bookmark: _Toc449701857]mvBase mvBASIC User Reference Guide Overview
The mvBASIC User Reference Guide documents the mvBase version of DATA/BASIC, and contains these major sections:
	Syntax Notations
	Describes the syntax conventions that are used throughout this document.

	Introduction to mvBASIC
	Introduces mvBASIC, summarizes some of its features and enhancements, and recommends a sequence for reading the sections of this guide.

	Creating mvBASIC Programs
	Describes how programs are created. It goes into more detail than the average beginner requires, so most readers may skim it for the general concepts and return to it for details as necessary.

	Format, Data and Expressions
	Describes program format, data types, and the syntax for expressions. It should be read carefully.

	Overview of mvBASIC Statements and Functions
	Provides a tour of the mvBASIC language. Every statement and function is covered by topic and should be read very carefully. It is recommended that readers stop periodically, perhaps after every subsection of "Overview of Statements and Functions" to try the material just covered. "Statement and Function Reference" can be used for reference at this stage.

	Using the mvBASIC Debugger
	Provides a quick summary of Debugger commands, and several task-oriented topics related to using the Debugger.

	Statement and Function Reference
	Provides a comprehensive listing of mvBASIC functions and statements, their syntax parameters, and several examples of their use.

	O/S Interoperability Commands
	Provides a comprehensive listing of O/S interoperability commands, their syntax parameters, and several examples of their use.

	Appendix A: Error Messages
	Provides a comprehensive listing of mvBASIC error messages.

	Appendix B: List of ASCII Codes
	Provides a table which summarizes ASCII codes and compares them with decimal, hex, and character values.

	Appendix C: mvBASIC Program Examples
	Provides diverse examples of actual mvBASIC programs in order to show a variety of programming techniques.

Contents
mvBase mvBASIC User Reference Guide Overview	1
Syntax Notations	9
mvBASIC Syntax Notations	10
Introduction to mvBASIC	11
mvBASIC Enhancements	11
Creating mvBASIC Programs	14
Creating the Program File	15
Editing and Listing the Source Code	16
Listing the Program with BLIST	17
Compiling the Program	19
Option for Debugging a Program (X)	20
Options for Cataloging (C, S)	21
Printing Compiler Output (P)	21
Specifying a Version of the Operating System	22
Obtaining the Compilation Time and Date	22
Running the Program	24
Cataloging the Program	25
A Sample Program	27
Variables	29
Assigning and Using Variables	29
Data Typing in mvBASIC	29
Advanced Variables	29
Array Variables	30
Dimensioned Arrays	31
File Variables	31
Select-list Variables	32
Reading and Writing Tapes or Floppy Disks	33
READ Statement	33
UREADLINE Function	34
UREAD Command	36
Compiler Directives	38
Comments in the Object Code	38
Reading External Source Code ($CHAIN, $INCLUDE, $INSERT)	38
Reading and Updating File Items	39
File Variables (OPEN)	39
Reading and Writing a File Item (READ, WRITE, etc.)	39
File Item Locks (READU, WRITEU, RELEASE, etc.)	40
The LOCKED Clause	40
Select-lists (SELECT, READNEXT)	40
Deleting File Items (DELETE, CLEARFILE)	41
READT Statement	41
READNEXT Statement	43
READTX Statement	44
CHAIN Statement	45
READV Statement	45
READB Statement	47
READF Statement	47
Reading and Writing Tapes or Floppy Disks	48
Case Construct	49
IF Construct	51
MATREAD Statement	53
OPEN Statement	55
The Print and CRT Statements	57
Sending Output to the Screen and Printer	57
Output Devices (PRINT, CRT, DISPLAY)	57
Sending Output to the Printer (PRINTER)	57
Print Units	57
Formatting and Positioning Output	58
Tabulation and Carriage Return Suppression	58
Formatted Screens (@)	58
Masking Data (FMT)	59
Headings and Footings	59
The PRINTERR Statement	60
PRINT Statement	61
CRT (or DISPLAY – not used) Command	63
CRT Statement	63
Using the mvBASIC Debugger	65
Debugger Commands: Quick Reference	66
Fixing a Bug	67
A Sample Program	68
Printing Source Code	68
Using Breakpoints and Trace Variables	70
Displaying and Changing a Variable	71
Using Execution Steps	71
Assigning New Values for Testing	72
Entering the Debugger	74
Exiting the Debugger	75
Displaying and Changing a Variable	76
Displaying All Variables	76
Displaying and Changing Simple Variables	76
Displaying and Changing Dimensioned Array Elements	77
String Windows ([)	78
Accessing Source Code	79
Identifying Source Code (Z)	79
Displaying Source Code (L, $, ?)	79
Using Breakpoints and Tracing	81
Establishing a Breakpoint (B)	81
Deleting a Breakpoint (K)	82
Defining Trace Variables (T)	82
Deleting a Trace Variable (U)	83
Displaying Breakpoints and Trace Variables (D)	83
Using Execution Control	84
Continue Execution (G)	84
Setting an Execution Step (E)	84
Ignoring Breakpoints (N)	85
Printing Output	86
Toggling Program Output (P)	86
Toggling Line Printing (LP)	86
Close the Printer (PC)	86
Using the Return Stack	87
Displaying the Return Stack (S)	87
Popping the Return Stack (R)	87
Modal Traps (M)	87
Additional mvBase specific commands	88
Format, Data and Expressions	89
Program Format	90
Types of Statements	90
Statement Labels	91
Writing Readable Code	91
Using Remarks	92
Constants, Variables, and Data Types	93
Assigning and Using Constants	93
Assigning and Using Variables	93
Data Typing in mvBASIC	93
Building Expressions	95
Simple Assignment	95
Using Operators and Functions	96
Numeric Expressions	97
Arithmetic Operators	97
Parentheses in Expressions	97
Character Strings in Arithmetic Expressions	98
Intrinsic Mathematical Functions	98
String Expressions	99
Logical Data (Booleans)	100
Relational Operators	100
Logical Operators	101
The MATCH Operator	102
Logical Functions	102
Overview of mvBASIC Statements and Functions	104
Assignment Statements	105
Intrinsic Functions	107
Internal Program Control	109
The IF Conditional	109
The THEN and ELSE Clauses	109
CASE Constructs	110
The LOOP Construct	110
FOR Loops	111
Stopping a Program (STOP, ABORT, END)	111
The END Statement	111
Internal Subroutines (GOSUB, RETURN)	112
External Program Control	113
External Subroutines (CALL, SUBROUTINE, RETURN)	113
Passing Parameters (COMMON)	113
Executing a TCL Command (EXECUTE, CHAIN, DATA)	114
The DATA Statement	114
Using EXECUTE with Select-lists	114
Executing Another mvBASIC Program (ENTER)	115
CAP-HUSH-ON and CAP-HUSH-OFF Commands	115
Executing a Windows Command Line Command	115
Sending Output to the Screen and Printer	116
Output Devices (PRINT, CRT, DISPLAY)	116
Sending Output to the Printer (PRINTER)	116
Print Units	116
Formatting and Positioning Output	116
Tabulation and Carriage Return Suppression	117
Formatted Screens (@)	117
Masking Data (FMT)	118
Headings and Footings	118
The PRINTERR Statement	119
Terminal Input	120
The INPUT Statement	120
Variations on INPUT	120
Input from the Type-ahead Buffer (INPUTIF)	120
Masked Input Statements (INPUT @)	121
INPUTTRAP, INPUTNULL and INPUTERR	121
INPUT and the Data Stack	122
Dynamic Array Processing	123
File Items and Dynamic Arrays	123
Dynamic Array Functions	123
The LOCATE Statement	124
Alternate Forms for Dynamic Array Processors	124
Counting Delimiters and Substrings	125
Generalized String Processing	126
Substring Assignment	126
The FIELD Function	126
The COL1, COL2, and LEN Functions	127
The INDEX Function	127
Trimming Spaces	127
Converting Characters	127
Dimensioned Arrays	128
Assigning Dimensioned Array Variables (DIM)	128
Converting Strings to Dimensioned Arrays	128
MATREAD and MATWRITE	129
The MAT Statement	129
Reading and Updating File Items	131
File Variables (OPEN)	131
Reading and Writing a File Item (READ, WRITE, etc.)	131
File Item Locks (READU, WRITEU, RELEASE, etc.)	131
The LOCKED Clause	132
Select-lists (SELECT, READNEXT)	132
Deleting File Items (DELETE, CLEARFILE)	132
Reading and Writing Tapes or Floppy Disks	133
Communications	134
Unlinking and Attaching a Line	134
Sending Data to a Line (SEND, SENDX, SENDBREAK)	134
Sending a BREAK	134
Receiving Data from a Line	134
The Type-ahead Buffer	134
Input from an Attached Line (GET, GETX)	135
Execution Locks	136
The THEN and ELSE Clauses to LOCK	136
Compiler Directives	137
Comments in the Object Code	137
Reading External Source Code ($CHAIN, $INCLUDE, $INSERT)	137
Miscellaneous Statements and Functions	138
Conversion Codes (ICONV, OCONV)	138
The SENTENCE () Function	138
The SYSTEM Function	138
Entering the Debugger	139
The Error Message Processor	140
Statement and Function Reference	143
$* Statement	146
$CHAIN Statement	147
$INCLUDE/$INSERT Statement	149
= Statement	151
[]= Statement	153
@ Function	156
ABORT Statement	163
ABS Function	164
ALPHA Function	165
ASCII Function	167
ASSIGNED/UNASSIGNED Function	168
ATTACH TAPE DEVICES/ CHANGE BLOCK-SIZE Statement	169
AUX ON/AUX OFF Statement	170
BLOCK/UNBLOCK Statement	171
BREAK Statement	173
CALL Statement	175
Passing Arrays	175
CASE Construct	177
CHAIN Statement	179
CHANGE Function	180
CHAR Function	181
CLEAR Statement	182
CLEARCOMMON Statement	183
CLEARDATA Statement	184
CLEARFILE Statement	185
CLEARSELECT Statement	186
COL1 Function	187
COL2 Function	189
COMMON Statement	190
COMPARE Statement	192
CONNECT/ DISCONNECT Statement	193
CONSOLE Statement	194
CONVERT Function	195
CONVERT Statement	196
COS Function	197
COUNT Function	198
CRT Statement	199
CRT ON Statement	200

[bookmark: _Toc449701858]Syntax Notations
The following conventions are used throughout mvBase documentation for indicating command line syntax:
	italics
	Anything shown in italics is variable information for which the user provides a specific value.

	options
	If two or more options are specified, separate the options with a space.

	()
	Parentheses must be typed. It is usually sufficient to type only the first parenthesis; the second is normally optional.

	[]
	Anything shown enclosed within square brackets is optional. The square brackets themselves are not typed.

	|
	A vertical bar that separates two or more elements indicates that any one of the elements can be typed.

	{ }
	If two or more element are enclosed within curly braces and separated by a vertical bar, one of the elements must be typed.

All punctuation marks that are included in syntax format lines (e.g., commas, parentheses, angle brackets, underscores, hyphens) are required in the syntax unless indicated otherwise. Square brackets are not typed.
The following command line is an example that incorporates these syntax notations.
	LIST [DICT] filename [WITH [EVERY | EACH] attribute-name value-list] [(P)]

The only two elements of the line that must be entered are LIST and filename. LIST must be entered exactly as shown. filename is a variable; the user can enter the name of any accessible file. attribute-name and value-list are also variables that the user supplies. The vertical bar indicates that either EVERY or EACH can be entered; the brackets indicate that both of these components are optional. If the P option is entered, it must be enclosed within parentheses.
When variables that the user supplies are two or more words long, hyphens are used instead of blank spaces to separate the words in order to show that only one element is required. This command line is an example.
	LIST filename item-list

The word filename indicates a single element, and the words item and list joined by a hyphen likewise indicate a single element.

[bookmark: _Toc449701859]mvBASIC Syntax Notations
Syntax notations for mvBASIC are very similar to the standard syntax notations, but they do differ in minor ways. This topic summarizes syntax notations specific to mvBASIC.
	italics
	Anything shown in italics is variable information for which the user provides a specific value.

	[]
	Anything shown enclosed within square brackets is optional unless indicated otherwise. The square brackets themselves are not typed unless they are shown in bold.

	|
	A vertical bar that separates two or more elements indicates that any one of the elements can be typed.

	< >
	Bold angle brackets are part of the syntax, and must be typed unless indicated otherwise.

	{ }
	Bold parentheses are a part of the syntax. both parentheses must be typed unless indicated otherwise.

All punctuation marks that are included in syntax format lines (e.g., commas, parentheses, angle brackets, underscores, hyphens) are required in the syntax unless indicated otherwise.
The following command line is an example that incorporates these syntax notations.
	OPEN [‘DICT’] filename TO filevar THEN | ELSE statements

The keywords OPEN and TO must be specified. Either the THEN or ELSE clause must be specified, but both are not necessary. The user must supply appropriate values for filename, filevar, and statements. The keyword DICT is optional, but if it is included, it must be enclosed within parentheses.
When variables that are supplied by the user are two or more words long, hyphens are used instead of blank spaces to separate the words in order to show that only one element is required. For example, in the following statement, the word count-var indicates a single element.
	GET var [,length] SETTING count-var...

[bookmark: _Toc449701860]Introduction to mvBASIC
The Development of mvBASIC
The mvBASIC Language is an extended version of Dartmouth BASIC, specifically designed for data base management. Developed at Dartmouth College in 1963, Dartmouth BASIC is a language especially easy for the beginning programmer to master.
Consequently, practically every programmer today knows at least a little BASIC; therefore, because of its similarity to BASIC, mvBASIC is instantly familiar to almost every programmer. In addition, mvBASIC it is infinitely more flexible and more powerful than Dartmouth BASIC.
[bookmark: _Toc449701861]mvBASIC Enhancements
Some of mvBASIC’s enhancements, which represent improvements over Dartmouth BASIC, are listed here to suggest what mvBASIC can accomplish.
Program Format
	Statement Labels
	In Dartmouth BASIC, numeric statement labels are mandatory for each line of source code. The statements are stored according to their statement labels, so they are not executed in linear sequence (that is, according to where they appear in the source text), but in numeric sequence.
In mvBASIC, statements are executed in the order in which they appear. Statement labels are not mandatory for each line. Furthermore, statement labels do not have to be numeric: alphabetic and alphanumeric labels are also supported, with the provision that the label must end with a colon (:). A particularly useful feature is that there is no limit to the length of a statement label, as long as the file item does not exceed 248K.

	Multiple Statements
	mvBASIC allows several statements to be written on the same line of source code, as long as they are separated by a semicolon (;).

	Variable Names
	Variables can have any name of any length, as long as the file item does not exceed 248K.

	Fixed Point Arithmetic
	Computations are done with fixed-point arithmetic, with 19-digit precision and up to 9 decimal digits.

New Features
	O/S Interoperability Commands
	This is one major and unique feature of mvBASIC. O/S interoperability commands are executable from within mvBASIC, and enable the user to execute Windows programs and/or to access Windows files.

	Dynamic Arrays and String Handling
	Since string manipulation is primary to the mvBase system, string functions are key to the structure of mvBASIC. File items are read as dynamic array strings in an mvBASIC program, with each line of text separated by an attribute mark. String functions range from locating a substring or specifying a range of characters, to the powerful dynamic array functions for extracting, replacing, deleting, or inserting a specified field in the array.

	Screen Manipulation
	The @ function in mvBASIC provides a wide range of terminal control sequences. Using these sequences, full formatted screen programs can be produced.

	Communications
	mvBASIC includes several statements designed for communication programs on the mvBase system. Data can be sent to or taken from any remote line.

	External Subroutines
	External subroutines can be executed in mvBASIC with the CALL statement. In addition, any TCL command can be executed with the EXECUTE statement, and its output and error messages can be captured for use in the program.

	Dimensioned Array
	In mvBASIC, dynamic arrays can be converted into dimensioned arrays, and vice versa. Programmers therefore have the freedom to choose the data form that is most efficient for their applications.

	Item and Execution Locking
	File item locks and execution locks in mvBASIC can prevent multiple users from accessing the same data or executing the same subroutine at the same time.

	Tape or Floppy Disk I/O
	mvBASIC provides statements for directly reading and writing magnetic tapes or floppy disks within the program. This includes Virtual tape drives, and where security permissions allow, Mapped Drives within and external to the Windows environment.

This guide aims to teach the mvBASIC programming language to a beginning user, assuming that the user is familiar with some programming concepts and techniques and also with the structure of the mvBase system. The reader does not have to be an experienced programmer in order to learn mvBASIC from this guide.

The following reading sequence is recommended:
	Creating mvBASIC Programs
	Describes how programs are created. It goes into more detail than the average beginner requires, so most readers may skim it for the general concepts and return to it for details as necessary.

	Format, Data and Expressions
	Describes program format, data types, and the syntax for expressions. It should be read carefully.

	Overview of mvBASIC Statements and Functions
	Provides a tour of the mvBASIC language. Every statement and function is covered by topic and should be read very carefully. It is recommended that readers stop periodically, perhaps after every subsection of Overview of mvBASIC Statements and Functions to try the material just covered. Statement and Function Reference can be used for reference at this stage.

After studying the sections on Creating mvBASIC Programs, Format, Data, and Expressions, and Overview of mvBASIC Statement and Functions, readers should be ready to start writing programs, using the section Statement and Function Reference as a reference.
Readers should refer to Using the mvBASIC Debugger to learn how to debug their programs. This section contains a tutorial and a reference. There are few Debugger commands, so each may be studied and experimented with as the reader proceeds.
	Appendix A: Error Messages
	Lists error messages which may be encountered while creating programs.

	Appendix B: List Of ASCII Codes
	Provides a list of ASCII codes, which are often necessary for using the CHAR or SEQ functions.

	Appendix C: mvBASIC Program Examples
	Provides several example applications for users to study or copy.

[bookmark: _Toc449701862]Creating mvBASIC Programs
The process of writing an mvBASIC program is relatively simple. The programmer edits the program source code and then compiles the program. If the program compiles successfully, it then executes. If the program runs correctly, it is ready to be cataloged; otherwise, it is debugged (optionally, using the interactive debugger) and the sequence is repeated.
The following topics are presented in this section:
· Creating the Program File
· Editing and Listing the Source Code
· Compiling the Program
· Running the Program
· Cataloging the Program
· A Sample Program

[bookmark: _Toc449701863]
Creating the Program File
You must store mvBASIC programs in a special file called a program file. Create program files using the CREATE-BFILE command for compatibility.
For example, to create a program file called BP with a modulo of 3 for the file dictionary and a modulo of 5 for the data file, type:
	>CREATE-BFILE BP 3 5

CREATE-BFILE prepares a file to be used for mvBASIC programs by creating a File Definition item in the Master Dictionary with a definition code of DC in Attribute 1. CREATE-BFILE is otherwise identical to CREATE-FILE.
See User Account Verbs for further information about the options to CREATE-BFILE.

[bookmark: _Toc449701864]Editing and Listing the Source Code
The source code of the program is written and edited by the programmer as an item in the program file.
The only restriction to the name of the program is that it not be the same as the name of the file (e.g., item BP in file BP). Such a program will not compile: if it did, the data file pointer in the file dictionary would be overwritten when the program was compiled, and all source code would be lost.
The source code can be created and edited with the Editor or with DocuMentor, a full screen editor. See the Editor User Reference Guide section for more information about the Editor.

[bookmark: _Toc449701865]Listing the Program with BLIST
The BLIST command produces a formatted listing of the source code item.
Format
	BLIST filename progname-list [(options)]

Parameter(s)
	filename
	Name of a file that contains mvBASIC programs

	progname-list
	Contains the item-IDs of the programs to be printed.

Description
An asterisk (*) specifies all programs in the file. BLIST, unlike most other commands, sends output to the printer by default. Use the T option to BLIST to force output to the terminal screen. To send a program MENU to the screen, type:
	>BLIST BP MENU (T)

The screen is cleared and the text of MENU is printed:
	DD MMM YYYY BASIC PROGRAM NAME: MENU PAGE 1
0001 LOOP
0002 PRINT "Q FOR QUIT, C FOR CREATE A NEW ENTRY, "
0003 PRINT "E FOR EDIT A ENTRY, D FOR DELETE AN ENTRY"
0004 PRINT
0005 PRINT "ENTER A CHARACTER (Q,C,E OR D)":
0006 INPUT ANSWER,1_
0007 ON INDEX("QCED",ANSWER,1) GOSUB 100,200,300,400
0008 REPEAT
0009 STOP
0010 SUBROUTINES
0011 100 *** SUBROUTINE FOR QUITTING ***
0012 PRINT "--EOJ"
0013 STOP
0014 RETURN
0015 200 *** SUBROUTINE FOR CREATING A NEW ENTRY ***
0016 PRINT "CREATING A NEW ENTRY..."
 .
 .

 .

The program line numbers are shown, and the text prints with an indent of 5 spaces. The text between THEN or ELSE clauses and corresponding END statements are indented another 3 spaces, as is the text between program loops. Note that alphanumeric statement labels are also indented, although numeric statement labels are not.
The D option to BLIST specifies that the lines should be double-spaced. In addition, a range of lines in the program can be specified.
The default indents used by BLIST are changed by editing line 4 of the Verb Definition item in the Master Dictionary.

[bookmark: _Toc449701866]Compiling the Program
Source code must be compiled before the program can be executed. The source code can be written and edited by the programmer, but since it cannot be directly interpreted by the mvBase system until it is translated into object code, the compiler translates source code into object code and places a pointer to the object code in the file dictionary.
The compiler can therefore be thought of as a translator from your language (or more accurately, the language of mvBASIC) into the machine’s language.
Two (synonymous) commands can be used to compile a program, BASIC and COMPILE.
Format
	BASIC filename progname-list [(version#,options)]

Format
	COMPILE filename progname-list [(version#,options)]

Parameter(s)
	filename
	Name of the mvBASIC program file

	progname-list
	Contains the item-IDs of the programs to be compiled. An asterisk (*) specifies all programs in the file.

For example, to compile the program ADDNUMS in the file BP, type:
	>COMPILE BP ADDNUMS

or:
	>BASIC BP ADDNUMS

If the compile is successful, the user sees something similar to:
	>BASIC BP ADDNUMS

SUCCESSFUL COMPILE! 1 FRAMES USED.

>

The asterisks (*) each represent a source line successfully compiled into object code. If an error occurs in compilation, the error code is printed with a message. See Appendix A: Error Messages for a list of error messages generated by the COMPILE command.

The following topics are presented in this section:
· Option for Debugging a Program (X)
· Options for Cataloging (C, S)
· Listing the Source (L)
· Printing Compiler Output (P)
· Specifying a Version of the Operating System
· Obtaining the Compilation Time and Date

[bookmark: _Toc449701867]Option for Debugging a Program (X)
The X option supplies information that the programmer may use to debug a program.
Creating the Cross-reference (X)
The X option to COMPILE creates a cross-reference of all variables and labels used in the program and places it in the BSYM file in the current account. For example:
	>COMPILE BP ADDNUMS (X)

SUCCESSFUL COMPILE! 1 FRAMES USED.

>

The BSYM file now has 3 items with item-IDs: SUM, NUM1, and NUM2. Each item has a single attribute, with value marks separating the line numbers at which the variable was accessed. For example, item SUM contains in Attribute 1:
	005*]006

From this we can tell that the SUM variable is accessed in lines 5 and 6 of the program. The asterisk (*) after 005 signifies that the variable is assigned a value on line 5 of the program. Similarly, item NUM1 of the file BSYM contains:
	002*]005]006

The data section of the BSYM file is initialized each time the X option to COMPILE is used, regardless of whether the same program is compiled or what program file the program resides in. If the BSYM file does not already exist, an error message results and the cross-reference is not created.

[bookmark: _Toc449701868]Options for Cataloging (C, S)
When a programmer has determined that no more changes will be made to the program, the C or S options compact the object code or suppress the symbol table.
Suppressing the EOLs
As seen in the example of output from COMPILE with the A option, the last opcode on each line is EOL, for End-Of-Line. When a program is fully debugged, a programmer might choose to compile it with the C option to suppress the EOL opcodes, since they are necessary only for debugging purposes. Thus the programmer can reduce the size of the object code by 1 byte for each line of source code. In the 8-line program ADDNUMS, only 8 bytes would be saved, but the C option could make a significant difference for a larger program.
The EOL opcodes, however, are used to count lines for error messages and for the interactive debugger. By using the C option, further debugging of the program becomes exceedingly difficult. If errors do occur in a program compiled with the C option, all errors will report on line 1, and the interactive debugger will be largely inoperable.
Suppressing Messages and the Symbol Table (S)
The compiler creates a symbol table along with the object code. The symbol table, along with any messages generated by the compiler, can be suppressed with the S option to COMPILE.
The symbol table is necessary for the mvBASIC interactive debugger, which is largely inoperable without it. However, a programmer can choose to suppress the symbol table when the program is fully debugged and ready for use.
See Using the mvBASIC Debugger for further discussion on this subject.

[bookmark: _Toc449701869]Printing Compiler Output (P)
The P option sends all compiler output to the printer. This option is particularly useful with the L option.

[bookmark: _Toc449701870]Specifying a Version of the Operating System
The COMPILE command includes an option for specifying what version of the operating system the program is meant to run on. It can be one of the following numbers:
	22
	Specifies Mentor O/S release 2.2.

	24
	Specifies Mentor O/S and PC/OS release 2.4.

	25
	Specifies Mentor O/S release 2.5.

	26
	Specifies Mentor O/S release 2.6.

	27
	Specifies Mentor O/S release 2.7.

	28
	Specifies Mentor O/S and O/E release 2.8.

	30
	Specifies Mentor O/S, PC/OS, and O/E release 3.0.

Although the program compiles for a different version of the operating system, it will not run unless it matches the current operating system release. For example, the ADDNUMS program can be compiled for version 2.7 of the operating system with the following command:
	>COMPILE BP ADDNUMS (27)

SUCCESSFUL COMPILE! 1 FRAMES USED.

>

However, if a user attempts to run the program on a different version of the operating system, the program does not run and an error message is printed:
	>RUN BP ADDNUMS

[B97] VERSION NUMBER OF COMPILED PROGRAM 'ADDNUMS' IS DIFFERENT FROM THAT OF OPERATING SYSTEM.

>

[bookmark: _Toc449701871]Obtaining the Compilation Time and Date
The time and date an mvBASIC program was compiled may be obtained using the following:
Format
	LIST [DICT] filename [item-list] [selection]
 COMP.TIME [output] [print] [modifiers] [(options)]

Parameter(s)
	filename
	Name of the mvBASIC program file.

	item-list
	Item-ID of the program for which you want to obtain the time and date of compilation. If item-list is not specified, the time and date will be listed for all programs in the file.

For example, the time and date TEST1 was compiled may be obtained using the following:
	>LIST DICT BP TEST1 COMP.TIME
BP...........................TIME OF COMPILATION
TEST1 08:11:12 02 MAR 1992
1 ITEM LISTED.
>

	NOTE
	COMP.TIME is a B-correlative in NEWAC which is copied to the master dictionary of new accounts.

[bookmark: _Toc449701872]Running the Program
The RUN command executes a compiled mvBASIC program.
Format
	RUN filename progname [(options)]

Parameter(s)
	filename
	Name of the mvBASIC program file

	progname
	Item-ID of the program that you wish to run. (Multiple programs cannot be listed on the syntax line for RUN.)

	options
	The following options are supported:

	
	A
	Prevents a fatal error from invoking the Debugger by forcing an abort of the program instead. However, the BREAK key can still be used if the A option is specified.

	
	D
	The mvBASIC interactive Debugger is entered during execution by pressing the BREAK key. Alternatively, the program can be run with the D option, which forces the program to enter the Debugger before executing line 1.

	
	E
	The Debugger is entered when a fatal run-time error is encountered. If RUN is used with the E option, non-fatal errors will invoke the Debugger as well. See Appendix A: Error Messages for a list of error messages generated by the RUN command.

	
	I
	Inhibits the initialization of the data area when a new program is called with the CHAIN statement. When the EXECUTE statement was incorporated into mvBASIC, however, the CHAIN statement became largely obsolete. The I option is included for compatibility with older code, but its use is not recommended and will create problems if the workspace area is at all corrupted.

	
	N
	If a HEADING statement has been specified in a program, the program waits for a carriage return by the user after each page of output to the terminal. The N option suppresses this feature. This is equivalent to specifying the N option to the HEADING statement within the program source.

	
	P
	Sends output generated by PRINT, HEADING, and FOOTING statements to the printer instead of the screen, and is equivalent to placing a PRINTER ON statement in the beginning of the program.

	
	Q
	Eliminates checking the Master Dictionary for a cataloged subroutine, and assumes the object code of the subroutine resides in the same file as the object code of the main program.

	
	S
	The S option suppresses error messages generated by the RUN command.

For example, to execute the compiled program MENU in file BP, type:
	>RUN BP MENU

[bookmark: _Toc449701873]Cataloging the Program
The CATALOG command creates a Verb Definition item in the Master Dictionary of the user’s account by creating a direct pointer to the object code. By using CATALOG, a program can be executed directly through TCL, without using the RUN command. Once cataloged, the program can be recompiled without having to be recataloged.
Format
	CATALOG filename progname-list

Parameter(s)
	filename
	Name of the mvBASIC program file.

	progname-list
	List of the item-IDs of the programs to be cataloged. An asterisk (*) specifies all programs in the file.

For example, to catalog the program ADDNUMS in the file BP, use the following command:
	>CATALOG BP ADDNUMS
[244] 'ADDNUMS' CATALOGED!

>

The program can then be accessed as if it were a command:
	>ADDNUMS
ENTER ONE NUMBER?3
ENTER ANOTHER NUMBER?4
THE SUM OF 3 AND 4 IS 7

>

The program may fail to be cataloged because the object code cannot be found or because there already exists an item in the Master Dictionary with the same name.
The DECATALOG command deletes the Verb Definition item from the user’s account.
Format
	DECATALOG filename progname-list

Parameter(s)
	filename
	Name of the mvBASIC program file.

	progname-list
	List of the item-IDs of the programs to be decataloged. An asterisk (*) specifies all programs in the file.

Example
	>DECATALOG BP ADDNUMS
[242] ’ADDNUMS’ DECATALOGED.

>

The DECATALOG command not only deletes the Verb Definition item, it also deletes the pointer to the object code in the file dictionary. The program must be recompiled after it has been decataloged, before it can be executed again with RUN.

[bookmark: _Toc449701874]A Sample Program
As an example, you can create a simple program called ADDNUMS; it returns the sum of two numbers.
Before you write the program, you need a program file. The source code for an mvBASIC program is entered as an item in the program file. By convention, the program file for an account is called BP (for Basic Programs). The program file is created with the CREATE-BFILE command.
	>CREATE-BFILE BP 1 3
[417] FILE 'BP' CREATED; BASE = 10999, MODULO = 1.
[417] FILE 'BP' CREATED; BASE = 11000, MODULO = 3.
>

The command in the preceding example creates a program file, with a modulo of 1 for the file dictionary and a modulo of 3 for the data file. The new source code can now be placed in item ADDNUMS in the program file BP. For writing the program, use the Editor:
	>ED BP ADDNUMS
NEW ITEM
TOP
.I
001+PRINT "ENTER ONE NUMBER":
002+INPUT NUM1
003+PRINT "ENTER ANOTHER NUMBER":
004+INPUT NUM2
005+2INT_SUM = NUM1 + NUM2
006+PRINT "THE SUM OF ":NUM1 : " AND ":NUM2:" IS ":2INT_SUM
007+STOP
008+END
009+ <RETURN>
TOP
.FI
'ADDNUMS' FILED.

>

Compile the program with the COMPILE command, translating the program’s source code into object code.
	>COMPILE BP ADDNUMS

SUCCESSFUL COMPILE! 1 FRAMES USED.

>

The program compiles without error. Once the program is compiled, execute it with the RUN command.
	>RUN BP ADDNUMS
ENTER ONE NUMBER?4
ENTER ANOTHER NUMBER?9
THE SUM OF 4 AND 9 IS 13

>

The program runs successfully on the first attempt. You can now catalog it, so that you can use it as if it were a command:
	>CATALOG BP ADDNUMS
[244] 'ADDNUMS' CATALOGED!

>ADDNUMS
ENTER ONE NUMBER?5
ENTER ANOTHER NUMBER?3
THE SUM OF 5 AND 3 IS 8

>

You have created an mvBASIC program. More complex programs seldom compile the first time, and once they compile they don’t always run without error. However, the process remains unchanged: edit, compile, and run the program until it runs successfully.

As the training progresses, the following items are highlighted for initial importance:
Definition and examples of Variables
READ statement
CASE statement
IF statement
MATREAD command
OPEN Statement
These items are covered in detail on the following pages

[bookmark: _Toc449701875]Variables
[bookmark: _Toc449701876]Assigning and Using Variables
Variables are symbolic names that represent stored data values and can change in value during program execution. The value can be explicitly assigned by the programmer, can be read as input, or can be the result of operations performed by the program during execution.
At the start of program execution, all variables are set to an unassigned state. Any attempt to use a variable in the unassigned state produces an error message, and a value of 0 is assumed.
Names for both variables and constants must begin with an initial alphabetic character. They can also include one or more digits, letters, periods, or dollar signs. (Note that hyphens and underscores are not valid in a variable name.) Uppercase and lowercase are interpreted differently. A variable name can be any length, but it cannot be the same as any reserved word.
[bookmark: _Toc449701877]Data Typing in mvBASIC
In many other programming languages, such as Pascal and PL/I, a distinction is made among types of data. In these languages, all constants, variables, and their data types (integer, real, string, character, etc.) have to be declared at the beginning of the program so that the compiler will know how to store the data. Furthermore, the size of the variable often has to be declared so that the compiler will know how much space to set aside.
In mvBASIC, on the other hand, no data typing is made by the compiler: all data typing is made at run time, by context. A variable can therefore alternate between numeric and string values within the program. The only thing to be careful of is that when string values are assigned in the program text, they must be delimited by single quotes ('), double quotes ("), or backslashes (\). Otherwise, they are assumed to be variable names.
There is, of course, a difference between the way a numeric value and a string value can be treated: it is unreasonable to expect a program to take the square root of the string CARL. In such a situation, however, a fatal error will not occur—when a string value is applied to a numeric function, a value of 0 is assumed, a warning message is printed, and the program continues from there. String operations, on the other hand, can be executed on numeric values without conflict.
The advantage to no data typing is obvious; less work for the programmer and more flexibility for the program. The disadvantage is that errors which one might expect the compiler to detect are not caught. For example, if a variable name is misspelled, the compiler will simply assume that it is a new variable, and the program will successfully compile without an error or warning. Similarly, if a string variable containing CARL were accidentally used in the SQRT function, the programmer would not find out until the program was executed.
[bookmark: _Toc449701878]Advanced Variables
Thus far we have discussed simple numeric and string data only. There are other types of data in mvBASIC, however, which are assigned with special syntax.
The following topics are presented in this section:
Array Variables
Dimensioned Arrays
File Variables
Select-list Variables
[bookmark: _Toc449701879]Array Variables
An array variable is a variable that represents more than one data value. There are two types of array; dynamic arrays and dimensioned arrays.
Dynamic Arrays
A dynamic array is a mapping of the structure of file items to string data. Any string, however, can be considered a dynamic array.
A dynamic array is a string containing substrings that are separated by special delimiter characters. At the highest level, these elements are called attributes, and are separated by attribute marks (CTRL+^). Each attribute can contain values separated by value marks (CTRL+]). Each value can contain subvalues separated by subvalue marks (CTRL+\). Thus, an example of a dynamic array is as follows:
PETER THOMPSON]333-8989\232-8665^JOEFRIDAY]872-1789\865-0096
In this dynamic array string, there are two attributes:
PETER THOMPSON]333-8989\232-8665
JOE FRIDAY]872-1789\865-0096
there are four values:
PETER THOMPSON
333-8989\232-8665
JOE FRIDAY
872-1789\865-0096
and there are four subvalues:
333-8989
232-8665
872-1789
865-0096
The primary use of dynamic arrays is to store data that is either read from or written to a file item. Each line in a file item corresponds to a separate attribute. However, mvBASIC includes facilities for manipulating dynamic array elements that make dynamic arrays a powerful data type for processing information independently of file items.
Dynamic arrays are called arrays because they can be referenced by array functions using 3 subscripts, and they are called dynamic because elements can be added or deleted without having to recompile the program. Null attributes, values, and subvalues are represented by two consecutive attribute marks, value marks, or subvalue marks, respectively.
See Overview of mvBASIC Statements and Functions for more information on processing dynamic arrays.
[bookmark: _Toc449701880]Dimensioned Arrays
Dimensioned arrays (also called standard arrays) are one- or two- dimensioned structures. Each value in a standard array is called an element of the array.
A one-dimensioned array (also called a vector) has its elements arranged in sequence. An element of a vector is specified by the variable name, followed by the index of the element enclosed in parentheses. The index of the first element is (1).
A two-dimensioned array (also called a matrix) has the elements of the first row arranged sequentially in memory, followed by the elements of the second row, and so on. An element of a matrix is specified by the variable name, followed by two indexes enclosed in parentheses, representing the row and column position of the element. The indexes of the first element are (1,1).
The indexes used to specify the elements of a matrix that has four columns and three rows are illustrated by the following:
COST:
	
	Col1
	Col2
	Col3
	Col4

	Row1
	COST(1,1)
	COST(1,2)
	COST(1,3)
	COST(1,4)

	Row2
	COST(2,1)
	COST(2,2)
	COST(2,3)
	COST(2,4)

	Row3
	COST(3,1)
	COST(3,2)
	COST(3,3)
	COST(3,4)

Note that vectors, or one-dimensioned arrays, are treated as matrixes with a second dimension of 1. COST(3) and COST(3,1) are equivalent specifications and can be used interchangeably.
Indexes can be written as constants or as expressions.
Before a dimensioned array can be used in an mvBASIC program, a DIM or COMMON statement must be used to declare the maximum number of elements it will store throughout the program. See the reference pages on DIM and COMMON for more information.
[bookmark: _Toc449701881]File Variables
A file variable is created by a form of the OPEN statement. Once opened, a file variable is used in I/O statements to access the file.
See Overview of mvBASIC Statements and Functions for more information on assigning and using file variables.
[bookmark: _Toc449701882]Select-list Variables
A select-list is a set of item-IDs or attributes created by the SELECT statement or by TCL select-list generators, to be used in a READNEXT statement. There are three types of select-list:
	External file select-lists
	External file select-lists are created by TCL list generators such as SELECT, SSELECT, and QSELECT, external to the mvBASIC program.

	Internal file select-lists
	Internal File select-lists are created by using the SELECT statement on an mvBASIC file variable.

	Dynamic array select-lists
	Dynamic array select-lists are created by using the SELECT statement on an mvBASIC string variable. Such strings are stored in a dynamic array.

Refer to the section titled Overview of mvBASIC Statements and Functions for more information on select-list variables.

[bookmark: _Toc449701883]Reading and Writing Tapes or Floppy Disks
mvBASIC includes several statements for tape and floppy disk processing. For the purpose of this discussion a floppy disk functions as a tape and therefore, is included in any reference to a tape. For reading and writing strings on tape, there are the READT and WRITET statements. As expected, the READT statement reads the next record off the attached tape device, and the WRITET statement writes a record onto the tape. The READTX statement is designed for tapes which might contain segment marks. The READTX statement is identical to the READT statement, except that the data from the tape is translated into ASCII hexadecimal format before it is assigned to the string. The ICONV function can then be used to translate the string back into readable format. READTX is designed for reading segment marks (CHAR(255)) from a tape.
In addition, there are statements to simulate the T-WEOF and T-REW commands. The WEOF statement writes an End-Of-File mark at the current position of the tape, and the REWIND statement rewinds the tape to the beginning.
Each of the tape I/O statements includes THEN and ELSE clauses to specify action according to whether the tape statement was successful. The ELS clause is often used to produce a meaningful error message by calling the SYSTEM(0) function. The SYSTEM(0) function returns a number from 0 to 4, reflecting whether the latest tape I/O statement worked, and if it didn’t, what the problem was. See Statement and Function Reference for more information.

[bookmark: _Toc449701884]READ Statement
The READ statement assigns the string value of a file item to a variable.
Format
	READ var FROM [filevar,] item-ID [THEN statements1] [ELSE statements2]

Parameter(s)
	var
	Assigns var to the string value of the file item, in dynamic array form.

	FROM [filevar,] item-ID
	Item-ID is an expression evaluating to an item-ID. Assign var the string value of item-ID in the file which was opened as filevar. If filevar is not specified, the default file variable is used, which is the file most recently opened without a file variable assignment. If the specified item-ID does not exist, var is assigned the value of the null string ("").

	THEN statements1
	Executes statements1 if item-ID is read successfully.

	ELSE statements2
	Executes statements2 if item-ID cannot be read.

Description
Before a file can be accessed in a READ statement, it must be opened with an OPEN statement or an error will occur at runtime. See OPEN Statement for more information.
In mvBASIC there are also READU, READV, and READVU statements available. The READU statement sets an item update lock on the file item before reading it, the READV statement reads a single attribute from a given file item, and the READVU statement sets a item update lock and then performs a READV. See READU Statement, READV Statement and READVU Statement for more information.
Example
In this application, the OPEN statement is used to open a reservation file and the operator is asked to enter the customer's last name, to be used as an item-ID. If the reservation file is not found, the program aborts. A READ statement is then used to find the file item. If the item is found, any current reservations are shown; if it is not found, a new reservation may be entered.
	OPEN "RESERVATIONS" TO RES.FILE ELSE
 ABORT 201,"RESERVATIONS"
END
 .
 .
 .
LOOP
 PRINT "LAST NAME : " :
 INPUT ITEM.ID
 READ RECORD FROM RES.FILE,ITEM.ID THEN
 PRINT ITEM.ID : " ON FILE."
 GOSUB SHOW.RES
 END ELSE
 PRINT ITEM.ID : " NOT ON FILE"
 GOSUB ENTER.RES
 END
UNTIL LAST.NAME = "" DO REPEAT

[bookmark: _Toc449701885]UREADLINE Function
The mvBASIC command clause, UREADLINE, reads data from a previously opened file on the host system. A file on the host system is represented as an unformatted string of bytes without internal delimiters or markers. Read and write commands provide sequential access to files by advancing a pointer within the file. Subsequent read or write commands advance this internal pointer from the current position in the file. The user may specify the exact location within a file to be read from by positioning the file pointer before executing the command.
Format
	UREADLINE var FROM FileHandle {UNTIL delimiter} THEN statement(s) ELSE statement(s)

Description
UREADLINE reads the file currently opened to the file variable, FileHandle, starting at the current file pointer position up to but not including the delimiter or until an EOF mark is reached. The delimiter can be any single character and if not specified, the character line-feed (0x0a) is used. The resulting string value is assigned to the variable var. If an error occurs, the ELSE clause executes and UERROR() returns the appropriate error code. The file pointer is advanced by the number of bytes read.
	NOTE
	The file must be opened to be read.

If the UREADLINE command is used before opening the file for reading, an error results. The ELSE clause executes, the var is not changed and UERROR() returns the appropriate error code.
If any data is successfully read, then the THEN clause is taken. The var contains the data read and the value returned by UERROR() is the number of bytes read.
If no data is successfully read due to an EOF being encountered immediately, the ELSE clause is taken. The var is set to NULL and UERROR() returns the Windows error message 38 (ERROR_HANDLE_EOF).
If errors other than EOF occur during a UREADLINE the ELSE clause is taken, the var contains the data read up to the error and the UERROR() returns an appropriate error code.
For example, the statement below generates the behavior as shown in the table. The File Contents describes the content of the host file for the example. EOF indicates the actual End of File, var is the value returned. THEN/ELSE indicates which of the THEN or ELSE clauses is taken and UERROR() indicates what the value returned by an immediate call to the UERROR() function would return.
	UREADLINE var FROM filehandle UNTIL ';' THEN/ELSE clause

	HOST FILE CONTENTS
	var
	THEN/ELSE
	UERROR()

	EOF
	""
	ELSE
	38

	";EOF"
	""
""
	THEN
ELSE
	0
38

	";;EOF"
	""
""
""
	THEN
THEN
ELSE
	0
0
38

	"ABCEOF"
	"ABC"
""
	THEN
ELSE
	3
38

	"ABC;EOF"
	"ABC"
""
	THEN
ELSE
	3
38

	"ABC;;EOF"
	"ABC"
""
""
	THEN
THEN
ELSE
	3
0
38

	"ABC;XYZEOF"
	"ABC"
"XYZ"
""
	THEN
THEN
ELSE
	3
3
38

	"ABC;XYZ;;EOF"
	ABC"
"XYZ"
""
	THEN
THEN
ELSE
	3
3
38

	";ABC;;XYZ;;EOF"
	""
"ABC"
""
"XYZ"
""
""
	THEN
THEN
THEN
THEN
THEN
ELSE
	0
3
0
3
0
38

This example prints the first line (delimited by a line-feed) of the file \books\chap5.txt. A null string is returned if the file pointer is positioned at the end of the file.
	FILENAME="c:\books\chap5.txt"
LF = CHAR(10)
UOPEN FILENAME FOR READ TO FILEDES ELSE
 PRINT "Unable to open ":FILENAME
 STOP
END
UREADLINE VAR1 FROM FILEDES UNTIL LF ELSE GOTO EOJ:
END
PRINT VAR1

[bookmark: _Toc449701886]UREAD Command
The UREAD command reads data from a previously opened file on the host system. A file on the host system is represented as an unformatted string of bytes without internal subdividers or markers. Read and write commands provide sequential access to files by advancing a pointer within the file. Subsequent read or write commands advance this internal pointer from the current position in the file. The user may specify the exact location within a file to be read from by positioning the file pointer before executing the command. See ULSEEK Function for additional information.
Format
	UREAD var FROM FileHandle FOR n THEN statement(s) ELSE statement(s)

Description
UREAD reads the file currently opened to the file variable FileHandle for the number of bytes specified by n or until an EOF mark is reached. n indicates the number of contiguous bytes from the current file pointer position to be read. The resulting string value is assigned to the variable var. If an error occurs, the ELSE clause executes and UERROR() returns the appropriate error code. The file pointer is advanced by the number of bytes read.
	NOTE
	The file must be opened to be read.

· If the UREAD command is used before opening the file for reading, an error results, the ELSE clause executes, and UERROR() returns the appropriate error code.
· If any data is successfully read, the ELSE clause is not taken. In that case, UERROR() returns the number of bytes read.
· If an EOF is encountered, the value returned by UERROR() is less than the requested amount.
· If no EOF is encountered, the value returned by UERROR() is equal to the requested amount.
· If no data is successfully read due to an EOF being encountered immediately, the ELSE clause is taken, no data is returned and UERROR() returns the Windows error message 38: ERROR_HANDLE_EOF.
· If errors other than EOF occur during a UREAD the ELSE clause is taken, no data is returned, UERROR() returns the appropriate error code.
Examples
	UOPEN "C:\TEST.TXT" TO HANDLE ELSE STOP
10 UREAD ITEM FROM HANDLE FOR 500 THEN
 PRINT UERROR()
 END ELSE
 PRINT "ERROR CODE = ": UERROR()
 GOTO EOJ:
 END
 GOTO 10
If TEST.TXT is 943 bytes the output is:
 500
 443
 ERROR CODE = 38

The next example prints the first 50 bytes of the file \books\chap5.txt. If less than 50 bytes are present, the bytes available are printed. A null string is returned if the file pointer is positioned at the end of the file. Line feed characters embedded in the file are also printed.
	FILENAME="c:\books\chap5.txt"
 UOPEN FILENAME FOR READ TO FILEDES ELSE
 PRINT "Unable to open ":FILENAME
 STOP
 END
 UREAD VAR1 FROM FILEDES FOR 50 ELSE GOTO EOJ:
 PRINT VAR1

After execution of the following example, the string TESTDATA2 is equal to TESTDATA1. \books\chap6.txt was created using the UCREATE statement which opened the file for writing only.
	 TESTDATA1 = "THIS IS TEST DATA"
FILENAME="c:\books\chap6.txt"
 UCREATE FILENAME TO FILEDES2 ELSE
 PRINT "Unable to create and open ":FILENAME
 STOP
 END
 * Write out DATA and CLOSE
 UWRITE TESTDATA1 ON FILEDES2 ELSE
 PRINT "Write to ":FILENAME:" failed"
 END
 UCLOSE FILEDES2 ELSE
 PRINT "UCLOSE failed on ":FILENAME
 END
 *
 UOPEN FILENAME TO FILEDES3 ELSE STOP
 UREAD TESTDATA2 FROM FILEDES3 FOR 17 ELSE GO TO EOJ:

[bookmark: _Toc449701887]Compiler Directives
There are four compiler directive statements. Each of these statements begins with a dollar sign ($).
[bookmark: _Toc449701888]Comments in the Object Code
The $* statement places a comment directly in the object code of a program when it is compiled. It is most useful for entering version numbers or copyright information before software is distributed.
[bookmark: _Toc449701889]Reading External Source Code ($CHAIN, $INCLUDE, $INSERT)
Three statements tell the compiler to read source code from another file item: $INCLUDE, $INSERT, and $CHAIN.
$INCLUDE and $INSERT are identical statements. Either statement results in the program being compiled as if the external source code were written at the point where the $INCLUDE or $INSERT statement had been entered. Compilation will then continue at the line after the $INCLUDE or $INSERT statement. $INCLUDE and $INSERT are also useful for any code that might be used several different programs. An example of such code might be a file item containing COMMON statements.
The $CHAIN statement is different from $INCLUDE and $INSERT in that the compilation will not return to the original program. The $CHAIN statement is not intended for code which might be shared by several programs, but for programs which may have source code longer than 32K bytes. The $CHAIN statement allows several different file items containing source code to be CHAINed together.
The only restriction to $INCLUDE, $INSERT, and $CHAIN is that the number of bytes in the resulting object code cannot exceed 248K.

[bookmark: _Toc449701890]Reading and Updating File Items
Before an item in a file can be accessed, it must be assigned a symbolic name, called a file variable. The file variable is necessary to provide a pointer to the file that will be used by the program each time the file is accessed.
[bookmark: _Toc449701891]File Variables (OPEN)
The OPEN statement assigns a file variable to a file, so that the program can read, write, select, or delete items in the file. All subsequent access of the file must reference the file variable and not the file name itself.
If a file is opened without a file variable specified, it uses the default file variable. Any subsequent file access statements that do not specify a file variable will use the default file variable. Only one file can be assigned to the default file variable at a single time.
[bookmark: _Toc449701892]Reading and Writing a File Item (READ, WRITE, etc.)
Once the file is opened, any item can be directly accessed. The READ statement assigns the string value of a file item to a dynamic array variable. The fields of the array can then be accessed by the dynamic array processing functions EXTRACT, REPLACE, INSERT, and DELETE. The WRITE statement writes a new or updated dynamic array string into a file item. There are several variations to READ and WRITE provided by mvBASIC. The READV and WRITEV statements read and write only a single attribute of an item, as a shortcut for programs which are concerned only with a single attribute. In addition, the MATREAD and MATWRITE statements read and write items as dimensioned arrays, with each attribute corresponding to an element of the array.
The file-reading statements are each equipped with THEN and ELSE clauses. If the item cannot be found, the v statements are executed. If it can be found, the THEN statements are executed. See Internal Program Control for more information on the syntax of THEN and ELSE clauses.
[bookmark: _Toc449701893]File Item Locks (READU, WRITEU, RELEASE, etc.)
Each of the statements for reading a file item have corresponding statements that place a lock on the file item as it is read. These statements are the READU, READVU, and MATREADU statements. (The U suffix stands for Update, declaring that the file item might be changed and rewritten.) The item lock is lifted either when the item is released with a RELEASE statement, deleted with a DELETE statement, written with a WRITE, WRITEV, or MATWRITE statement, or when the program is terminated. Until the lock is lifted, no other users will be able to access the same file item with a READU, READVU, or MATREADU statement.
File item locks only affect other READU, READVU, and MATREADU statements. While an item is locked, programs can access the file item with a normal READ, READV, or MATREAD statement, or they can even write it with any of the file writing statements. The success of a file item lock depends on its being respected by all other programs that access the same file.
If an item is to be written but the programmer does not want the lock removed, the WRITEU, WRITEVU, and MATWRITEU statements should be used in place of WRITE, WRITEV or MATWRITE. These statements will write the file item but retain the item lock for subsequent update. (Again, the U suffix stands for Update, declaring that further update might occur.)
[bookmark: _Toc449701894]The LOCKED Clause
The item-locking statements READU, READVU, and MATREADU are each equipped with an optional LOCKED clause. Normally, when a program attempts to read and lock an item which is already locked, the program waits for the item to be released before continuing with execution. However, if the LOCKED clause is included, the program simply executes the LOCKED statements and continues with execution immediately. The LOCKED statements follow the syntax of THEN and ELSE clauses in mvBASIC.
The LOCKED clause helps to avoid the situation called a deadly embrace. A deadly embrace happens when two users both lock items, and before releasing their locks, each user then tries to read and lock the other item. Without the LOCKED clause, both users will be indefinitely stuck since neither is free to unlock its item. If the LOCKED clause is used, however, the deadly embrace cannot occur.
[bookmark: _Toc449701895]Select-lists (SELECT, READNEXT)
Select-list variables can be created through the mvBASIC SELECT statement, or by using the EXECUTE statement to call one of the INFO/ACCESS select-list generators. The SELECT statement does not accept the selection expressions accepted by the INFO/ACCESS commands; however, the SELECT statement does allow a select-list to be created from the attributes of a dynamic array string. See External Program Control for more information on using EXECUTE for generating select-lists.
A select-list can also be created external to the program by executing one of the INFO/ACCESS select-list generators and then immediately running the program. If the program is designed this way, the SYSTEM(11) function is recommended to test if there is an external select-list.
Once the select-list is created, it can be read with the READNEXT statement. READNEXT reads the next item- ID in the select-list. After selecting a file, the READNEXT statement is generally used in a loop to perform a procedure on all selected items.
[bookmark: _Toc449701896]Deleting File Items (DELETE, CLEARFILE)
The DELETE statement is a statement that deletes a specific file item from an opened file. It should not be confused with the DELETE function or the DEL statement, which both delete a field from a dynamic array.
The CLEARFILE statement deletes all items in the data file.

[bookmark: _Toc449701897]READT Statement
The READT statement reads the next record (block) on the magnetic tape or floppy disk unit, assigning its value to the specified variable.
Format
	READT var [RETURNING var]
[THEN
 statements
END] [ELSE
 statements
END]

Parameter(s)
	var
	Variable into which the next record is read, in dynamic array form.

	RETURNING var
	If a tape or floppy disk error occurs while using the RETURNING clause, the tape or floppy disk error is assigned to the returning variable and program control continues through the ELSE clause.

	THEN statements
	Executes statements if record is successfully read.

	ELSE statements
	Executes statements if record cannot be read.

Description
The READT statement may be used to read a record from an attached tape or floppy disk unit. If a record is read, its value is assigned to the specified variable and the THEN statements are executed. If the record cannot be read, the ELSE statements are executed, and the value of var1 does not change.
A record might not be read because the tape or floppy disk has not been attached, or because an End-Of-File mark was encountered. To determine why a tape or floppy disk could not be read, the SYSTEM function is often used in the ELSE portion of a READT statement. See SYSTEM Function for more information.
READT also has an optional UNLABELED clause to allow 1/2-inch tapes to read a tape without reading a label.
Format
	READT var [UNLABELED] [RETURNING var]
[THEN
 statements
END] ELSE
Statements
END

To read tapes or floppy disks in ASCII hexadecimal format, use the READTX statement.
See READTX Statement for more information.
Example
The program segment in this example reads data off a tape and prints them in a readable format. The item-IDs are printed and then each attribute is printed on a separate line, preceded by the attribute number.
	LOOP
 READT NEWRECORD ELSE
 IF SYSTEM(0) = 2 THEN
 END.OF.TAPE = TRUE
 END ELSE
 PRINT "SYSTEM ERROR --"
 GOSUB EXIT
 END
 END
 REC.NUM += 1
UNTIL END.OF.TAPE DO
 PRINT
 PRINT "PRESS ANY KEY TO READ RECORD " : REC.NUM :" : " :
 INPUT CHAR,1
 PRINT
 NO.OF.ATTRS = DCOUNT(NEWRECORD , AM)
 FOR I = 1 TO NO.OF.ATTRS
 PRINT I, NEWRECORD< I >
 NEXT I
REPEAT

[bookmark: _Toc449701898]READNEXT Statement
The READNEXT statement reads the next sequential value in a select-list.
Format
	READNEXT var1 [, var2] [FROM select-var] [THEN
 statements1] [ELSE statements2]

Parameter(s)
	var1
	Reads the next value in the select-list, and assign it to var1.

	var2
	Assigns the value mark count to var2. This option is applicable only to external select-lists constructed through the TCL SSELECT command.

	FROM select-var
	Reads values from the named select-list variable select-var. If select-var is not specified, the default select-list variable is used.

	THEN statements1
	Executes statements1 unless at the end of the list.

	ELSE statements2
	Executes statements2 if at the end of the list.

Description
The READNEXT statement assigns the next value from an active select-list to the specified variable. If it is a select-list of item-IDs, the variable may then be used in a READ statement to read the file item. (The SELECT statement might also create a select-list of attributes from a dynamic array.)
The select-list can be either an internal select-list or an external select-list. See SELECT Statement for more information on creating select-lists. If a value is successfully read from the select-list, the variable var is assigned to the value, and the THEN statements are executed. When the end of the select-list is reached, var is set to the null string and the ELSE statements are executed.
Example
This application creates an alphabetical list of each item-ID in the file CUSTOMERS. The file is selected to the select variable LIST, and each item-ID is read from LIST with READNEXT. The END.OF.LIST variable is set to true when the READNEXT statement fails to read any more item-IDs, and is used to complete the loop. The actual alphabetizing is accomplished with the LOCATE and INS statements.
	EQUATE TRUE TO 1, FALSE TO 0
OPEN "CUSTOMERS" TO CUSTFILE ELSE
 ABORT 201, "CUSTOMERS"
END
SELECT CUSTFILE TO LIST
ALPH.LIST = ""
END.OF.LIST = FALSE
LOOP
 READNEXT ID FROM LIST ELSE
 END.OF.LIST = TRUE
 END
UNTIL END.OF.LIST DO
 LOCATE ID IN ALPH.LIST BY "AL" SETTING POSITION
THEN
 PRINT ID : " DUPLICATE ENTRY! POSSIBLE FILE CORRUPTION"
 ABORT
 END ELSE
 INS ID BEFORE ALPH.LIST<POSITION>
 END
REPEAT

[bookmark: _Toc449701899]READTX Statement
The READTX statement reads the next record (block) on the magnetic tape or floppy disk unit in hexadecimal format, assigning its value to the specified variable.
Format
	READTX var [RETURNING var]
[THEN
 statements
END] [ELSE
 statements
END]

Description
The READTX statement may be used to read a record from an attached magnetic tape or floppy disk unit, converting each character into its ASCII hexadecimal equivalent. See READT Statement for more information on the syntax for READTX.
By converting to hexadecimal, tapes or floppy disks containing segment marks (CHAR(255)) may be read by mvBASIC. READTX is most useful for reading tapes or floppy disks which were not written on a Mentor-based system and are therefore not in Mentor format.
After reading a tape or floppy disk in hexadecimal format via READTX, the ICONV function may be used with conversion code MX to convert the text back to readable text. To read a tape or floppy disk in its natural format, use the READT statement. See READT Statement for more information, and see Appendix B: List Of ASCII Codes for a list of ASCII codes.
Example
In this application, the READTX statement reads the data off the tape or floppy disk in hexadecimal format, and the ICONV function is used to convert the data back into ASCII characters.
	READTX RECORD ELSE
 PRINT "SYSTEM ERROR --"
END
RECORD = ICONV(RECORD,"MX")

[bookmark: _Toc449701900]CHAIN Statement
The CHAIN statement terminates execution of a program and executes a TCL command.
Format
	CHAIN command-expr

Parameter(s)
	command-expr
	Any command to be passed to TCL.

Description
Like the EXECUTE statement, the CHAIN executes a TCL command. The CHAIN statement differs from the EXECUTE statement, however, in that it does not support any of EXECUTE’s features (such as capturing output or error messages), and it does not return to the program, but returns directly to the environment which called the program.
If the CHAIN statement is used to execute another program, parameters cannot be directly passed to the second program. However, if the I option (which suppresses initialization of all values) is used with the RUN command, the COMMON area may be used to pass parameters from one program to the next. See COMMON Statement for more information.
The data stack may be used to supply input which the TCL command might request. See DATA Statement for more information.
Example
To end a program by running another program, WRAPUP, the code might read:
	CHAIN "RUN BP WRAPUP"

[bookmark: _Toc449701901]READV Statement
The READV statement permits a single attribute of a file item to be read and placed into a dynamic array variable.
Format
	READV var FROM [filevar,] item-ID, attr# [THEN statements1] [ELSE statements2]

Parameter(s)
	var
	Assigns to var the string value of the attribute, in dynamic array form.

	FROM [filevar,] item-ID, attr#
	Assigns var the string value of attribute attr# in item-ID in the file which was opened as filevar.
item-ID is an expression evaluating to an item-ID.
attr# is a valid expression which must evaluate to an attribute number in the specified item. If the attribute number is zero then it returns the number of attributes in the item being read. This is useful when processing items of different sizes, where a different algorithm is required for very large items.
If filevar is not specified, the default file variable is used, which is the file most recently opened without a file variable assignment. If the specified item-ID or attribute number does not exist, var is assigned the value of the null string ("").

	THEN statements1
	Executes statements1 if the attribute is read successfully.

	ELSE statements2
	Executes statements2 if the item cannot be found or if the attribute cannot be read.

Description
Before a file may be accessed in a READV statement, it must be opened with an OPEN statement or an error will occur at run-time. See OPEN Statement for more information.
In mvBASIC, there are also READ, READU, and READVU statements available. The READVU statement sets an item update lock on the item before reading the attribute. The READ statement reads the entire file item, and the READU statement sets an item update lock on the file item before reading it.
See READU Statement, READV Statement and READV Statement for more information.
Example
In this application, the file represented by CUSTFILE contains the name, address, and phone number of each customer. The phone number is kept in Attribute 6 of each item. To retrieve only the customer's phone number, the READV statement is used to capture Attribute 6.
	PRINT "ENTER CUSTOMER ID : " :
INPUT ID
READV PHONE FROM CUSTFILE,ID,6 ELSE
 PRINT "ERROR!"
 STOP
END
PRINT ID , PHONE

[bookmark: _Toc449701902]READB Statement
The READB statement reads the specified number of characters from a binary item.
Format
	READB str FROM file.var,item.id,start.pos, no.of.bytes THEN/ELSE

Description
mvBASIC allows the user to read a specified number of characters from a binary item stored in a disk file. The format is very similar to READV, but rather than specifying the attribute to be read, the user specifies the starting position, and number of bytes to read. READBU behaves like READVU, and sets and obeys item locks.
If a start position of 0 is specified, the number of bytes (no.of.bytes) in the item is returned. If a start position beyond the end of the item is specified, null is returned. If too many bytes are specified, as many as are available are returned.
Binary items are stored in 2000 byte increments, so there may be extra data following the last meaningful data byte.

[bookmark: _Toc449701903]READF Statement
The READF statement reads the specified number of characters from a normal item.
Format
	READF str FROM file.var,item.id,start.pos, no.of.bytes THEN/ELSE

Description
mvBASIC allows the user to read a specified number of characters from any normal item stored in a disk file. The format is very similar to READV, but rather than specifying the attribute to be read, the user specifies the starting position and number of bytes to read. READFU behaves like READVU and sets and obeys item locks.
If a starting position of 0 is specified, the number of bytes in the item is returned. If a starting position beyond the end of the item is specified, null is returned. If too many bytes are specified, as many as are available are returned.

[bookmark: _Toc449701904]Reading and Writing Tapes or Floppy Disks
mvBASIC includes several statements for tape and floppy disk processing. For the purpose of this discussion a floppy disk functions as a tape and therefore, is included in any reference to a tape. For reading and writing strings on tape, there are the READT and WRITET statements. As expected, the READT statement reads the next record off the attached tape device, and the WRITET statement writes a record onto the tape. The READTX statement is designed for tapes which might contain segment marks. The READTX statement is identical to the READT statement, except that the data from the tape is translated into ASCII hexadecimal format before it is assigned to the string. The ICONV function can then be used to translate the string back into readable format. READTX is designed for reading segment marks (CHAR(255)) from a tape.
In addition, there are statements to simulate the T-WEOF and T-REW commands. The WEOF statement writes an End-Of-File mark at the current position of the tape, and the REWIND statement rewinds the tape to the beginning.
Each of the tape I/O statements includes THEN and ELSE clauses to specify action according to whether the tape statement was successful. The ELS clause is often used to produce a meaningful error message by calling the SYSTEM(0) function. The SYSTEM(0) function returns a number from 0 to 4, reflecting whether the latest tape I/O statement worked, and if it didn’t, what the problem was. See Statement and Function Reference for more information.

[bookmark: _Toc449701905]Case Construct
The CASE construct performs a conditional selection of a sequence of statements.
Format
	BEGIN CASE
 CASE expr
 statements
 CASE expr
 statements
 .
 .
 .
END CASE

Parameter(s)
	expr
	An expression to be evaluated for its logical value.

	statement
	Statements to be executed if the previous expr had been tested to be logically true.

Description
A CASE construct must begin with a BEGIN CASE statement and end with an END CASE statement. The CASE construct evaluates a series of conditions until one is true and executes a set of statements accordingly. The expressions in the CASE statements are evaluated sequentially for their logical value until a value of true is encountered. When an expression evaluates to true, the statements between the CASE statement and the next CASE statement are executed, and all subsequent CASE statements are skipped. Execution continues with the next sequential statement following the END CASE statement.
If none of the expressions evaluate to true, no action is performed, and program execution continues with the statement after the END CASE statement.
The CASE statement can usually replace multiple nested IF constructs: it is much more readable and easier to implement.
Example
To test a variable NUMBER for positive or negative value, the source code might read:
	BEGIN CASE
 CASE NUMBER > 0
 PRINT "POSITIVE"
 CASE NUMBER < 0
 PRINT "NEGATIVE"
 CASE 1
 PRINT "ZERO"
END CASE

Note that the third and last condition reads CASE 1 instead of CASE NUMBER = 0. In this situation the two conditions are equivalent since the last condition would only be tested if the first two failed. CASE 1 is often used as the last condition of a CASE statement, as a catch-all condition.

[bookmark: _Toc449701906]IF Construct
The IF construct allows execution of a statement or series of statements if the calculated expression is true, or of a separate set of statements if it is false.
Format
	IF expr THEN
 statements
END [ELSE
 statements
END]

Parameter(s)
	expr
	Any mvBASIC expression to be calculated for its logical value.

	statements
	Statement or set of statements to be executed conditionally.

The IF construct calculates the given expression for its logical values. The expression is false if it evaluates to 0 or the null string; it is true if it evaluates to anything else. If the expression is true, it then allows the statements following THEN to be executed; if the expression is false, it allows the statements following the ELSE to be executed, or if there is no ELSE portion, it allows program execution to continue with the next executable statement.
Both the THEN clause and the ELSE clause are optional; however, one or the other must be included.
IF constructs may be nested. However, it is recommended to use a CASE construct instead if possible.
Statement Syntax
Although the logistics of the IF construct are relatively simple, the syntax is very exact. These restrictions apply:
· Neither THEN nor ELSE can begin a program line. That is, this construct:
	IF ANSWER="Y"
 THEN...

results in an error message at compile time.
· When the statements following the THEN or ELSE are kept on a single line, they must be separated by a semicolon (;). That is, this construct is correct:
	IF PROFIT THEN GOSUB 100; PRINT PROFIT ELSE
 GOSUB 200;
 PRINT LOSS

· When the statements following the THEN or ELSE are written on more than one line, the THEN or ELSE must be the last word on its line and an END statement must end the set of statements. For example, the above example may be written:
	IF PROFIT THEN
 GOSUB 100
 PRINT PROFIT
 END ELSE
 GOSUB 200
 PRINT LOSS
 END

	NOTE
	The second variation is much easier to read than the first.

Example
In this application, IF constructs are nested to calculate the winner in a game of blackjack. It is sometimes difficult to determine which END statement belongs with which THEN or ELSE. A CASE statement is perhaps more appropriate to this function. See CASE Construct for more information.
	IF DEALERSCORE > 21 THEN
 PRINT "I WENT OVER. YOU WIN."
 YOURWINS = YOURWINS + 1
END ELSE
 IF NOT(DEALERSCORE < YOURSCORE) THEN
 PRINT "MY SCORE IS " : DEALERSCORE : ".
 I WIN."
 IF DEALERSCORE = YOURSCORE THEN
 PRINT "" ,"HOUSE RULES-DEALER ALWAYS WINS IN A TIE."
 MYWINS + = 1
 END
 END ELSE
 IF NOT(HIT = 11) THEN
 PRINT "MY SCORE IS " : DEALERSCORE : ".
 I HAVE TO HOLD. "
 PRINT "YOU WIN."
 YOURWINS + = 1
 END ELSE PRINT "5 CARDS. I WIN."; MYWINS
 + = 1
 END
END

[bookmark: _Toc449701907]MATREAD Statement
The MATREAD statement reads a file item and assigns each attribute to elements of a dimensioned array.
Format
	MATREAD array FROM [filevar,]item-ID [SETTING var]
[THEN
statements
END] [ELSE
statements
END]

Parameter(s)
	array
	Dimensioned array to be assigned. The array must have been dimensioned with a DIMENSION or COMMON statement before it may be assigned with the MATREAD statement.

	filevar
	File variable to which the file was opened. If filevar is not specified, the default file variable is used, which is the last file opened without a file variable assigned.

	item-ID
	An expression evaluating to the item-ID to be read. If the item is not found, the contents of array remain unchanged.

	SETTING var
	Assigns to var the number of attributes in the file item, regardless of whether this number is greater than the dimensions of the array.

	THEN statements
	Executes statements if the item-ID is found.

	ELSE statements
	Executes statements if the item-ID is not found.

Description
The MATREAD statement assigns the attributes of a file item to consecutive elements of the specified dimensioned array. The first attribute of the item becomes the first element of array, the second attribute of the item becomes the second element of array, and so on. The array must be named and dimensioned in a DIMENSION or COMMON statement before it is used in this statement.
A MATREAD statement does not set an update lock on the specified record. That is, the record remains available for update to other users. To prevent other users from updating the record until it is released, use a MATREADU statement. See MATREADU Statement for more information.
If the number of attributes in the file item is greater than the dimensions of the array, the remainder of the attributes are placed into the last element of the array, separated by attribute marks (CHAR(254)). If the number of elements in the array is greater than the number of attributes in the item, the extra elements in the array are assigned a null value.
The MATREAD statement performs the same function as using the READ statement to read a dynamic array and then using the MATPARSE statement to assign a dimensioned array to the same elements.
Example
In this application, the file item containing an employee’s statistics is read into the dimensioned array EMP. The EMP array is dimensioned to 100 elements, and the MATREAD statement reads the elements of the array from the employee’s file.
The SETTING clause of the MATREAD statement assigns a variable to the number of attributes in the file item, which is checked to see if it exceeds the dimensions of the array.
	DIMENSION EMP(100)
ID = "PHONE"
MATREAD EMP FROM EMPLOYEES, NAME SETTING NUM
ELSE
 PRINT "CANNOT LOCATE EMPLOYEE"
 STOP
END
IF NUM > 100 THEN
 .
 .
 .

[bookmark: _Toc449701908]OPEN Statement
The OPEN statement is necessary to access a file in the current program.
Format
	OPEN ['DICT',] file [TO filevar] THEN/ELSE statements

Parameter(s)
	'DICT'
	Opens the file dictionary. If the dictionary is not specified, the data file is assumed.

	file
	An expression evaluating to the file name to be opened. If the file is one of several data files associated with a single file dictionary, it may be opened by the syntax, 'dictname,file', with dictname the name of the file dictionary.

	TO filevar
	Defines filevar as the file variable name by which the file is accessed. If the TO filevar clause is not specified, the file may only be accessed as the default file variable.

	THEN statements
	Executes statements if filename is opened successfully.

	ELSE statements
	Executes statements if filename cannot be opened. This clause is generally used to cause print error messages or to stop or abort the program.

Description
The OPEN statement prepares a file for use by the current mvBASIC program. All references to a file within an mvBASIC program must be preceded by a separate OPEN statement for that file.
If a file variable is not assigned with the TO keyword, the file is assigned to the default file variable. Any subsequent file I/O statements that do not specify a file variable default to this file. Note that default file variables are not local to the program from which they are executed; when a subroutine is called, the current default file variable is shared with the calling program.
There is no limit to the number of files which can be open at a given time. However, if multiple files are opened and accessed concurrently, file variables must be used. The default file variable can represent only one file at a time.
Example
In this application, the OPEN statement is used to open a reservation file, and the operator is asked to enter the customer's last name, to be used as an item-ID. If the reservation file is not found, the programs abort. A READ statement is then used to find the file item. If the item is found, any current reservations is shown; if not, a new reservation may be entered.
	OPEN "RESERVATIONS" TO RES.FILE ELSE
 ABORT 201,"RESERVATIONS"
END
 .
 .
 .
LOOP
 PRINT "LAST NAME : " :
 INPUT ITEM.ID
 READ RECORD FROM RES.FILE,ITEM.ID THEN
 PRINT ITEM.ID : " ON FILE."
 GOSUB SHOW.RES
 END ELSE
 PRINT ITEM.ID : " NOT ON FILE"
 GOSUB ENTER.RES
 END
UNTIL LAST.NAME = "" DO REPEAT

	

It is also possible to open a file in a very simple way – to the ‘default’.
	OPEN "RESERVATIONS" ELSE STOP
LOOP
 PRINT "LAST NAME : " :
 INPUT ITEM.ID
 READ RECORD ITEM.ID THEN

This is seen in a few programs in the SAIG System.
The code should have been written this way:
	OPEN "RESERVATIONS" TO RES.FILE ELSE STOP 201,"RESERVATIONS"
LOOP
 PRINT "LAST NAME : " :
 INPUT ITEM.ID
 READ RECORD FROM RES.FILE,ITEM.ID THEN

[bookmark: _Toc449701909]The Print and CRT Statements

[bookmark: _Toc449701910]Sending Output to the Screen and Printer
There are two standard output devices available to an mvBASIC program:
· Terminal screen
· Printer
[bookmark: _Toc449701911]Output Devices (PRINT, CRT, DISPLAY)
The CRT and DISPLAY statements send output only to the terminal screen, and the PRINT statement sends its output either to the terminal screen or to the printer, depending on which has been selected as the output device. The syntax of all three statements is identical, except that the PRINT statement accepts the ON keyword for multiple print units.
In a broader sense, file items and attached tape devices or floppy disk devices can also be considered output devices. See Reading and Updating File Items and Reading and Writing Tapes or Floppy Disks later in this section for information on file I/O, tape I/O, and floppy disk I/O.
[bookmark: _Toc449701912]Sending Output to the Printer (PRINTER)
The PRINT statement by default sends output to the screen. There are two ways, however, to force the PRINT statement to send output to the printer: by the P option to the RUN command, or by the PRINTER ON statement. The PRINTER ON statement signifies that all subsequent PRINT statements will send output to a Spooler print unit. At the end of the program, the print unit will be sent to the Spooler.
The PRINTER OFF statement returns to the default condition: all PRINT statements after a PRINTER OFF statement will send output to the terminal screen again. To print output before the end of the program, the PRINTER CLOSE statement is available to send everything in the print unit directly to the Spooler.
[bookmark: _Toc449701913]Print Units
When output is being sent to a printer, the ON keyword to PRINT becomes significant. Generally, all printer output is sent to print unit 0. However, if several reports are being generated simultaneously, the ON keyword can be used to place output in several different print units (ranging from 0 to 599).
For example, suppose a program generates two reports, one displaying the names of all customers who are two months late on their bills, and the other displaying the names of all customers who have birthdays approaching. The program goes through each customer’s record in sequence. If bills have not been paid, the customer’s name and address are printed from print unit 0, and the customer is billed. If the customer has a birthday coming up, the name and address are printed from print unit 1, and the customer is sent a birthday card. At the end of the program, two complete (and hopefully distinctive) lists are printed out.
[bookmark: _Toc449701914]Formatting and Positioning Output
Normally output will be printed at the current position, and will force a carriage return and linefeed at the end of output. The print expression, however, may include features to tabulate output, to suppress the carriage return and linefeed, and (in the case of screen output) to place output at any coordinate, clear the screen, clear the line, or access any of several terminal capabilities.
In addition, format can be masked directly in an output expression. Format masking is a mechanism in mvBASIC by which data can be converted into a readable format without changing the data itself.
[bookmark: _Toc449701915]Tabulation and Carriage Return Suppression
A comma (,) in the print expression will force a tab to be printed at that position. A trailing colon (:) specifies that the automatic carriage return and linefeed will be suppressed in output.
[bookmark: _Toc449701916]Formatted Screens (@)
The @ function provides direct control of a terminal screen. When the @ function is used in a print expression, it generates a command sequence that is sent to the terminal screen, and the screen responds accordingly. In particular, the @ function can be used to move the cursor to any coordinate position on the screen. It can also be used to clear the screen, to clear to the end of the line, or to place the text in blinking mode. A full list of the features for the @ function is included in the reference page for @.
Using the @ function, a formatted screen can be generated. Programs can use the @ function to clear the screen and show a menu by sending menu options to different coordinates on the screen. The programmer might choose to turn the echo feature off to prevent user input from appearing on the screen.
For formatted screens, the INPUT @ statement can take input from any coordinate on the screen. In addition, the INPUT @ statement performs format masking directly on the input. See Terminal Input later in this section for more information on INPUT @.
Example
To print a menu on the screen, the source code might read:
	PRINT @(-1) :
PRINT @(8,3) : "CHOOSE ONE: " :
PRINT @(16,6) : @(-13) : "E" : @(-14) : "DIT AN ENTRY" :
PRINT @(16,8) : @(-13) : "N" : @(-14) : "EW ENTRY" :
PRINT @(16,10) : @(-13) : "D" : @(-14) : "ELETE AN ENTRY" :
PRINT @(16,12) : @(-13) : "Q " : @(-14) : "UIT" :
ECHO OFF
INPUT @(1,23) : ANSWER,1

The code in the preceding example does the following:
· The first line of code clears the screen.
· The second line prints CHOOSE ONE at column 8, row 3.
· The third through sixth lines print the menu options at specific coordinates, with the first character in reverse video mode. Thus, the first character stands out on the screen.
· The seventh line turns off the echo.
· The eighth line places the cursor at the bottom of the screen and accepts a single character as a response.
[bookmark: _Toc449701917]Masking Data (FMT)
Numbers are stored in internal format. Internal format is a representation of data which makes calculation easier but is more difficult to read. Format masks convert numbers into a format that is easier to read. In addition, the ICONV function converts string data into internal format, and the OCONV function converts strings back into external format.
For example, if the dollar amount $14,912.15 were stored with the dollar sign and comma, then any calculations on that number would be impossible—dollar signs and commas are not permitted in numeric values. Also, if interest is being calculated on this dollar amount, it would be much more accurate if more than two decimal places were being kept.
Suppose that the given dollar amount represents the balance of a bank account. The bank keeps this figure to 5 digits of precision, to ensure that any calculations are accurate—suppose the actual figure stored is 1491214987. When this figure needs to be printed in a monthly statement, the data needs to be converted into a readable form. The program which generates the monthly statements will therefore print the data with a format mask, which will descale the number, round it to 2 decimal places, enter a comma where necessary, and precede it with a dollar sign. If the variable BALANCE contains 1491214987, and the program contains the lines:
	PRECISION 4
.
.
.
PRINT BALANCE "29,$"
the output will be:
$14,912.15

A data mask can be implemented in two ways: either by using the FMT keyword, or by simply following data with the mask expression (as shown in the example). In the source code, the 2 signifies that the output should be rounded to two decimal places. The 9 is a descaling code, which determines where to place the decimal point—in this case, with a precision of 4 and a descaling code of 9, the decimal point is placed (9-4)=5 digits from the right. The, signifies to enter a comma every thousands place, and the $ says to precede the expression with a dollar sign. There are many other codes available for masking data. For a full list and explanation of these codes, see the reference page for FMT in Statement and Function Reference.
[bookmark: _Toc449701918]Headings and Footings
The HEADING statement can be used to specify a heading to be printed at the top of each page. It also has the facility to set up page parameters for use by FOOTING and PAGE.
If the output is being sent to the screen, then output will stop after each page of text once a HEADING statement is used. If a FOOTING statement is specified, a footing will be supplied at the end of the page, and the program will wait for a carriage return before continuing with output.
The PAGE statement can be used to force a new page at any point in the program, as long as a HEADING has been specified.
Note that HEADING, FOOTING, and PAGE will only affect the same output device that PRINT does. If multiple print units are being printed together, HEADING, FOOTING, and PAGE will affect print unit 0 (the default).
[bookmark: _Toc449701919]The PRINTERR Statement
The PRINTERR statement allows mvBASIC programs to produce output messages using the Error Message Processor and the ERRMSG file.
Before the introduction of the PRINTERR statement, the Error Message Processor was only available through the use of the STOP and ABORT statements, both of which terminated the program.

[bookmark: _Toc449701920]PRINT Statement
The PRINT statement sends data to the display terminal or to another specified print unit.
Format
	PRINT[ON unit#] print-expr

Parameter(s)
	ON unit#
	Specifies that data should be output to a Spooler print unit unit#. unit# may be any integer in the range 0 to 254, with 0 as the default. Print unit 0 is interpreted as either the display terminal or the printer, depending on previous use of the PRINTER statement. When the program is terminated or when a PRINTER CLOSE statement is used, all print units are output to the printer. This option is used when several different reports are generated by the program simultaneously.

	print-expr
	Print expression optionally combined with commas and colons to designate the format of the output (as described below). If print-expr is omitted, a blank line is output.

Description
The PRINTER statement determines the output device to which data will be written by the PRINT statement. See PRINTER Statement for more information. There is also a CRT (or DISPLAY) statement available in mvBASIC, which is identical to the PRINT statement except that it always prints its output to the screen, regardless of whether a PRINTER ON statement had been issued. In addition, there is also a SEND statement which may be used to send data to the screen of an attached line.
Formatted Output
The FMT function may be used to provide complex formatting specifications for output. See FMT Function for more information. Within the PRINT statement, however, commas and colons may be used to specify tab stops and suppress linefeeds.
· Expressions separated by commas (,) are printed at preset tab positions. Multiple commas may be used together to cause multiple tabulations between expressions. However, tab positions cannot be specified without being surrounded by expressions.
· Colons (:) encountered between expressions are interpreted normally as the string concatenation operator. If the last character of the PRINT statement is a colon, however, the linefeed and carriage return which usually follow the print statement are suppressed. This is especially useful when an INPUT statement is to follow, or in formatted screen programs.
· The @ function may be used with the PRINT statement to send the cursor to a specified location on the screen. Also, as shown in the second example, the @ function may be used to alter the attributes applied to text. For additional information regarding the @ function, refer to Overview of mvBASIC Statements and Functions.
Example
In this application, the full contents of a dimensional array are printed via a FOR...NEXT loop. Only one element is printed at a time, however; hence, to imitate the actual structure of the array, tab stops are generated with commas and new lines are suppressed with colons. Before a new row is begun, the carriage return is generated by a null PRINT statement.
	FOR I=1 TO 4
 FOR J=1 TO 3
 PRINT CUSTOMER(I,J), " " :
 NEXT J
 PRINT
NEXT I

If the array CUSTOMER contains the name, telephone number, and marital status of each customer, the output might be:
	FRED HENKEL
	555-1234
	SINGLE

	ARCHIE ANDREWS
	555-4321
	MARRIED

	MARGARET WOOD
	867-5309
	SEPARATED

	LUCY RICARDO
	338-6887
	MARRIED

In the next example, the @ function is used with the PRINT statement to print an error in blinking text onto the bottom of the screen. It also clears the rest of the line, in case there had already been text on that line. Note that the cursor remains at the bottom of the screen after the error message is printed.
	PRINT "ENTER YOUR SOCIAL SECURITY NUMBER : "
PROMPT ""
INPUT ANSWER,11,"*#"_
IF ANSWER MATCHES "3N-2N-4N" THEN
 GOSUB SOCSEC
END ELSE
 PRINT @(0,23) : @(-5) : ANSWER : " : DOES NOT MATCH SS #" :
 PRINT @(-6) : @(-4) :
END
 .
 .

Aligned with this command is the PRINTER ON Statement.
When the PRINTER ON Statement is used, then until the PRINTER CLOSE statement is issued, all output will go to the previously assigned Printer Queue
PRINTER ON
PRINT HEADING “XYZZY LTD ‘T’ ‘D’ Page ‘P’”
PRINT “DETAILS”
PRINTER OFF
PRINT “Report has been produced”
END

 .

[bookmark: _Toc449701921]CRT (or DISPLAY – not used) Command

[bookmark: _Toc449701922]CRT Statement
The CRT statement sends data to the terminal display screen. It is identical to the PRINT statement except that it writes only to the terminal. The DISPLAY statement is identical to the CRT statement.
Format
	CRT print-expr
DISPLAY print-expr

Parameter(s)
	print-expr
	A print expression, optionally combined with commas and colons to designate the format of the output. If print-expr is omitted, a blank line is output. See DISPLAY Statement for information on the format for a print expression.

Description
The CRT and DISPLAY statements cause data to be output to the terminal screen, regardless of whether a PRINTER ON statement has been executed. See DISPLAY Statement for more information on CRT and DISPLAY.
Example
To print the string "HELLO…" to the screen, the code might read:
	CRT "HELLO…"

or
	DISPLAY "HELLO…"

There are a myriad of CRT commands including functions such as:

CRT CHAR(27):”E” which is the equivalent of displaying ESC(ape) E to the screen
CRT @(-1) which is the same as Clear the Screen
CRT CHAR(7) which will provide a bell/beep sound from the user’s laptop speaker
These are detailed elsewhere, but are all used by the CRT command.

Please do not use the CRT ON command at SAIG. The files are not set-up/created for it’s use. The TANDOM command is of greater strength, and function.

[bookmark: _Toc449701923]Using the mvBASIC Debugger
This document summarizes Debugger commands, and describes how to fix a program error (bug), along with performing other Debugger tasks. This section contains the following topics:
	Debugger Commands: Quick Reference
	Provides a summary listing of Debugger commands.

	Fixing a Bug
	Describes the process of fixing mvBASIC program errors.

	A Sample Program
	Provides a sample mvBASIC program in order to demonstrate several programming tasks.

	Entering the Debugger
	Describes methods to activate the Debugger, and basic Debugger startup functions.

	Exiting the Debugger
	Describes methods for shutting down the Debugger, and Debugger shutdown functions.

	Displaying and Changing a Variable
	Describes how to use the Debugger to determine which variables are being assigned incorrectly.

	Accessing Source Code
	Describes methods to identify and display a program’s source code, even if that code is contained in the data section of a file.

	Using Breakpoints and Tracing
	Defines and describes how to use breakpoints in mvBASIC programs.

	Using Execution Control
	Describes how to control the execution of an mvBASIC program while in the Debugger in order to facilitate problem diagnosis.

	Printing Output
	Describes how to use print commands in the Debugger to toggle program output, toggle line printing, and to spool output to the printer.

	Using the Return Stack
	Describes the function and use of the Debugger’s return stack.

	External Commands
	A supplement for mvBase

[bookmark: _Toc449701924]Debugger Commands: Quick Reference
	B
	Set breakpoint condition.

	D
	Display breakpoint and trace tables.

	DE
	Escape to system Debugger.

	DEBUG
	Escape to system Debugger.

	E
	Set or disable execution step.

	END
	End program and return to TCL.

	G
	Continue execution until next breakpoint, fatal error or step.

	K
	Delete breakpoint condition.

	LP
	Toggle output to the printer.

	M
	Toggle modal trap.

	N
	Ignore specified number of breakpoints.

	OFF
	Log off.

	P
	Toggle printing of program output.

	PC
	Spool print buffer.

	R
	Pop return stack.

	S
	Display subroutine stack.

	T
	Set trace variable or toggle trace table off and on.

	U
	Remove trace variable from table.

	V
	Verify the object code.

	Z
	Identify source code.

	$
	Print current line number.

	?
	Print current line number.

	/
	Print and change the value of a simple or array variable.

	/*
	Print entire symbol table (all variables).

	[
	Set or remove a string window.

[bookmark: _Toc449701925]Fixing a Bug
A bug in a program is an error in the program’s logic which either prevents or impedes its performance. If a program doesn’t work perfectly, it is said to have a bug, and the programmer is obliged either to fix it or find a way around it.
Most new programmers debug a program by running it, reading the error message and its associated line number, and then examining the source code at the specified line. In many cases, this is enough: messages like RETURN EXECUTED WITH NO GOSUB are fairly simple to fix for a short program.
A programmer can also place trace statements at key points of execution; that is, statements that report what’s happening as the program executes. A PRINT statement can be placed within a conditional to determine whether a condition has proven true or not, or to display the value of variables. A PRINT statement can also be placed in a program loop, to report how many times the loop is being executed.
These debugging methods are fine if they are effective. However, they tend to be tedious to implement, and they involve recompiling the program with each attempt. Using the mvBASIC interactive Debugger, the debugging process becomes simpler and tidier.
Your first experience with the mvBASIC Debugger will probably be the result of an accident, either through a fatal error or because the BREAK key was pressed by mistake. At first, the only thing you need to know about the Debugger is how to get out of it (press END at the Debugger prompt). However, with a little patience you can learn to make the Debugger successfully fine-tune a program.

[bookmark: _Toc449701926]A Sample Program
To demonstrate how the Debugger can be used, take the example of an internal office program called BIRTHDAY. The BIRTHDAY program asks users for their birthdays and then tells them how many days they have until their next birthday. The program works fine for the programmer:
	>RUN BP BIRTHDAY

The screen is cleared and the following prompt appears (with the underline representing the position of the cursor.) :
	ENTER YOUR BIRTHDAY: MM/DD/YY

 A date is entered:
	ENTER YOUR BIRTHDAY: 6/4/65

The program converts the date and then prints out how many days there are until the programmer’s next birthday.
	ENTER YOUR BIRTHDAY: 04 JUN 1965
ON 06/04/1990, IN 319 DAYS, YOU WILL BE 25 YEARS OLD.

>

The programmer was satisfied by this performance, since the tricky part of the program was to make sure that it did not report a birthday that had already passed (e.g., IN -46 DAYS, YOU WILL BE 24).
Since the test above was performed in July and the date entered was in June, the tricky part seemed to have been solved.
Later the same day, however, it was reported that the program did not work. In particular, when supplied a date in September, the program still jumped ahead a year:
	ENTER YOUR BIRTHDAY: 3 SEP 1961
ON 09/03/1990, IN 410 DAYS, YOU WILL BE 29 YEARS OLD.

The programmer quickly examined the source code but could not find an error. However, using the Debugger, perhaps the user can discover something the programmer could not.
[bookmark: _Toc449701927]Printing Source Code
First, run the program with the D option, which forces the program to enter the Debugger before executing line 1.
	>RUN BP BIRTHDAY (D)

Before the program begins execution, the Debugger is invoked and E1 is printed, signifying that it stopped before executing line 1. The asterisk (*) is the Debugger prompt.
	*E1
*

The first thing is to examine the source code. Before you can access the source code, you need to turn trace on with the T command.
	*T<ENTER>

The source code is now available for listing by the Debugger with the L command. Since it is a short program, L can be used with the * option, specifying that the entire source code item should be printed.
	L
001 PROMPT " "
002 DIM BIRTHDAY(3), TODAY(3)
003 EQUATE TRUE TO 1,
004 FALSE TO 0,
005 BIRTH.MONTH TO BIRTHDAY(1),
006 BIRTH.DATE TO BIRTHDAY(2),
007 BIRTH.YEAR TO BIRTHDAY(3),
008 THIS.MONTH TO TODAY(1),
009 THIS.DATE TO TODAY(2),
010 THIS.YEAR TO TODAY(3)
011
012 INCREMENT = FALSE
013 PRINT @(-1) : "ENTER YOUR BIRTHDAY:":
014 INPUT @(20,0) BIRTHDAY.INT "D"
015 TODAY.INT = DATE()
016 TODAY.EXT = OCONV(TODAY.INT,"D/")
017 MATPARSE TODAY FROM TODAY.EXT,"/"
018 BIRTHDAY.EXT = OCONV(BIRTHDAY.INT,"D/")
019 MATPARSE BIRTHDAY FROM BIRTHDAY.EXT,"/"
020 IF THIS.MONTH > BIRTH.MONTH THEN
021 INCREMENT = TRUE
022 END
023 IF (THIS.MONTH = BIRTH.MONTH OR THIS.DATE BIRTH.DATE) THEN
024 INCREMENT = TRUE
025 END
026 IF INCREMENT THEN
027 THIS.YEAR += 1
028 END
029 AGE = THIS.YEAR - BIRTH.YEAR
030 NEXT.BIRTHDAY = BIRTH.MONTH : "/" : BIRTH.DATE : "/" : THIS.YEAR
031 NEXT.BIRTHDAY.INT = ICONV(NEXT.BIRTH-DAY,"D")
032 DAYS.TO.BIRTHDAY = NEXT.BIRTHDAY.INT - TODAY.INT
033 IF DAYS.TO.BIRTHDAY = 0 THEN
034 PRINT
035 PRINT "HAPPY BIRTHDAY!"
036 PRINT "TODAY, " : TODAY.EXT : ", YOU ARE " : AGE : " YEARS OLD"
037 END ELSE
038 PRINT
039 PRINT "ON ":NEXT.BIRTHDAY:", IN ": DAYS.TO.BIRTHDAY :" DAYS,":
040 PRINT " YOU WILL BE ":AGE:" YEARS OLD."
041 END
042 STOP
043 END

*

At first glance, it is obvious that the problem lies in the variable THIS.YEAR: THIS.YEAR is being incremented when it should not be. Before you start editing the program, however, use the Debugger to confirm your suspicions.
[bookmark: _Toc449701928]Using Breakpoints and Trace Variables
To examine the value of THIS.YEAR at the end of the program, the user needs to set up a breakpoint so that variables can be examined before the program ends. A breakpoint condition is a condition that invokes the Debugger whenever it is true.
The B command is used to assign a breakpoint condition. You can choose to break when the THIS.YEAR variable is equal to 1990.
	*BTHIS.YEAR=1990<ENTER> +

The breakpoint condition says to transfer into the Debugger when the variable THIS.YEAR is equal to 1990. The plus sign (+) is printed after pressing the ENTER key to signify that the breakpoint was accepted into the breakpoint table.
Enter THIS.YEAR as a trace variable. A trace variable is a variable that is printed whenever a breakpoint is encountered. Enter it into the trace table with the T command:
	*TTHIS.YEAR<ENTER> +

Add to the trace table the variables THIS.MONTH, BIRTH.MONTH, THIS.DATE, and BIRTH.DATE. It is suspected that the problem may be that these variables are not being assigned correctly.
	*TTHIS.MONTH<ENTER> +
*TBIRTH.MONTH<ENTER> +
*TTHIS.DATE<ENTER> +
*TBIRTH.DATE<ENTER> +

To display the breakpoint and trace tables, use the D command:
	*D
T1 THIS.YEAR
T2 THIS.MONTH
T3 BIRTH.MONTH
T4 THIS.DATE
T5 BIRTH.DATE
T6
B1 THIS.YEAR=1990
B2
B3
B4

*

The G command continues execution of the program.
	*G<ENTER>

The screen clears and the prompt is printed. Type 9/3/61 and press ENTER:
	ENTER YOUR BIRTHDAY: 9/3/61

The program halts when the breakpoint is reached.
	ENTER YOUR BIRTHDAY: 3 SEP 1961
*B1 28 END
THIS.YEAR 1990
THIS.MONTH 07
BIRTH.MONTH 09
THIS.DATE 20
BIRTH.DATE 03
*

As expected, the condition is true after line 27 has been executed. The message B1 28 means that item 1 on the breakpoint table caused the break, and the line about to be executed is line 28. (The actual text of that line is displayed in half-intensity on the terminal screen.) The current values of the trace variables are printed.
[bookmark: _Toc449701929]Displaying and Changing a Variable
The error in the program becomes increasingly obvious as you continue in the Debugger. Since THIS.MONTH, BIRTH.MONTH, THIS.DATE, and BIRTH.DATE contain the correct data, the problem is in the way they are being compared. For THIS.MONTH to be incremented, the INCREMENT variable must be true. Confirm this by using the / command to print out the current value of INCREMENT:
	*/INCREMENT

When ENTER is pressed, the value of INCREMENT is displayed, and you are given the opportunity to change its value.
	*/INCREMENT<ENTER> 1=_

Type 0 as the new value for INCREMENT and press ENTER.
	*/INCREMENT<ENTER> 1=0<ENTER>

*

Reset the value of THIS.YEAR to 1989.
	*/THIS.YEAR<ENTER> 1990=1989<ENTER>

*

[bookmark: _Toc449701930]Using Execution Steps
To find out which comparison is failing, step through the crucial lines of the program this time around to see what exactly is happening. To begin the program executing again after line 19 with an execution step of 1 (an execution step is a number of lines that should be executed before returning to the Debugger). The E command should be used to specify the execution step:
	*E1

Add the variable INCREMENT to the trace table.
	*TINCREMENT<ENTER>+

The G command continues execution after line 19. One line executes and the program returns to the Debugger. The line about to be executed will be printed on the screen, along with any trace variables.
	*G19<ENTER>
*E20 IF THIS.MONTH > BIRTH.MONTH THEN
THIS.YEAR 1989
THIS.MONTH 07
BIRTH.MONTH 09
THIS.DATE 20
BIRTH.DATE 03
INCREMENT 0
*

Step through 3 more times, until you find that the INCREMENT variable has been changed.
	*G
*E25 END
THIS.YEAR 1989
THIS.MONTH 07
BIRTH.MONTH 09
THIS.DATE 20
BIRTH.DATE 03
INCREMENT 1
*

By stepping through the program, you will see that the INCREMENT variable is changed immediately before line 25. List lines 23 through 25 with the L command:
	*L23-25
023 IF (THIS.MONTH = BIRTH.MONTH OR THIS.DATE > BIRTH.DATE) THEN
024 INCREMENT = TRUE
025 END
*

The problem is in the conditional for the IF statement. It becomes obvious that, as usual, the bug in the program is a simple logical error: the OR in line 23 should be an AND. With that simple edit, the program should run correctly.
Exit the Debugger with the END command, edit the source item, and recompile. The output now reads:
	ENTER YOUR BIRTHDAY: 3 SEP 1961
ON 09/03/1989, IN 45 DAYS, YOU WILL BE 28 YEARS OLD.

>

[bookmark: _Toc449701931]Assigning New Values for Testing
It seems as if the bug is gone, for now. However, you are not confident that the program will still behave correctly at the end of the year. Using the Debugger, you can change the value of the variable TODAY.INT in the program and see whether the program still works.
Run the program again with the D option, use the T command to turn trace on, and set a breakpoint to stop executing before line 16. (The $ symbol on the breakpoint table represents the current line number.) Then continue execution with the G command.
	>RUN BP BIRTHDAY (D)

*E1
*T<ENTER>
*B$=16<ENTER> +
*G<ENTER>

You will be prompted for a birthday. After entering a date, press ENTER. The program will halt before executing line 16.
	ENTER YOUR BIRTHDAY 03 SEP 1961
*B1 16 TODAY.EXT = OCONV(TODAY.INT,”D/”)
*

Before line 16 is executed, reassign the value of the TODAY.INT variable with the / command. Then type the G command to continue execution.
	*/TODAY.INT<ENTER> 7872=8036<ENTER>

*G<ENTER>

8036 is the internal value of December 31, 1989 and the program runs successfully:
	ON 09/03/1989, IN 246 DAYS, YOU WILL BE 29 YEARS OLD.
>

Now that you have an idea of what the Debugger can do and why you would use it, you can go over the specifics of its operation.

[bookmark: _Toc449701932]Entering the Debugger
There are three ways to enter the Debugger:
· Pressing BREAK during program execution invokes the mvBASIC Debugger. (This feature can be turned off within a program with the BREAK statement.)
· The D option to the RUN command will cause the program to enter the Debugger before starting execution.
· If the DEBUG statement is encountered in execution, the program will enter the Debugger at that point.
Fatal errors will also invoke the Debugger, with or without the user’s consent (Nonfatal errors will invoke the Debugger only if the RUN command is used with the E option.) When control passes to the Debugger for any of the above reasons, the current line number (preceded by
I for Interrupt,
E for Execution step, or
 M for Modal)
 is printed, and the * prompt displays.
Once in the Debugger, the user can print and change variable values, set breakpoint conditions or execution steps, and continue execution with the G command. When a breakpoint condition or execution step is reached, the Debugger will be instantly re-entered.
The Symbol Table
Variables within a program are each assigned a symbol, to be referenced by the interactive Debugger. When a program or subroutine is compiled, a symbol table is generated with the object code. The Debugger accesses the symbol table through a pointer in the file dictionary. If the program calls an external subroutine, a complete symbol table can be accessed by the Debugger for the external subroutine.
The S option to COMPILE suppresses the symbol table from being generated, but it should be used only when a program is fully operational. Without the symbol table, the Debugger’s function is greatly impeded.

[bookmark: _Toc449701933]Exiting the Debugger
Other than returning to program execution with G, the Debugger can be exited using the following commands:
	END
	Exits program, Debugger, and calling Proc or program (if any), and returns directly to TCL.

	OFF
	Exits both program and Debugger, and logs the user off the system directly.

	DE[BUG]
	Transfers execution to the system Debugger, and the ! prompt will be displayed. The user can return to the mvBASIC Debugger (* prompt) with the G command to the system Debugger.

	E and G
?? To be validated
	E will debug at 0 lines (None), and G will Go forward and processes unlimited lines (perform the program).
?? To e validated

[bookmark: _Toc449701934]Displaying and Changing a Variable
One of the most valuable things a programmer can learn about a failed program is what happens to the variables at different points in the program. By examining variable values, the programmer can determine which variables are being assigned incorrectly, and thus find out which statements are not being executed properly.
[bookmark: _Toc449701935]Displaying All Variables
The /* command displays all variables in the symbol table. All variables are reported, including file variables, select-list variables and dimensioned array variables. For example:
	/
FILEVAR
PROGRAM=TESTIT
FILE.ARRAY(1,1)=JOEY
FILE.ARRAY(1,2)=FRED FLINTS
.
.
.

By using the /* command, the user can scan the values for all variables at once. However, the /* command will not give the user the opportunity to change any values, and if there are many variables or some extremely long string variables, the values may scroll past the screen too quickly.
[bookmark: _Toc449701936]Displaying and Changing Simple Variables
The values of simple variables can be printed and (optionally) reassigned with the / command.
Format
	/var

Parameter(s)
	var
	Variable name.

Description
A single variable can be displayed with the / command and the variable name. The user will be shown the current value, and be prompted with an equals sign to change the value at will. Whatever the user types before pressing ENTER becomes the new value for the variable.
For example, to display the current value of the variable STRING, the user might type:
	*/STRING

The Debugger will respond with the current value of STRING and an equals (=) sign. If STRING contains the word HELLO, the user sees the following with the underscore representing the user’s cursor position:
	*/STRING<ENTER> HELLO=_

The user can then enter a value for STRING and press ENTER. To leave the value unchanged, the user should press ENTER without reassigning the variable.
[bookmark: _Toc449701937]Displaying and Changing Dimensioned Array Elements
The values of a single element or of all elements of a dimensioned array can also be printed and (optionally) reassigned with the / command.
Format
	/array [(n [,m])]

Parameter(s)
	array
	Name of the dimensioned array.

	n
	Row number of the array element. If omitted, all elements of the array will be printed.

	m
	Column number of the array element. If array is two-dimensional, m must be supplied if n is supplied.

Description
The individual elements of a dimensioned array can be treated like simple variables by referencing them with parentheses.
Example
To display the current value of element 2,3 of array NAME.ARRAY, the user might enter:
	*/NAME.ARRAY(2,3)

The Debugger will respond with the current value of NAME.ARRAY(2,3) and an equals sign. If element 2,3 contains HERB, the user would see:
	*/NAME.ARRAY(2,3)<ENTER> HERB=_

(with the underscore representing the user’s cursor position).
The user then has the option to fill in a value for NAME.ARRAY(2,3), or to leave it unchanged by pressing ENTER.
Alternatively, all elements of a dimensioned array can be displayed and changed by omitting the element reference. For example, to display the current values of all elements of array NAME.ARRAY, the user can type:
	*/NAME.ARRAY

and will be prompted with the value of each element of the array as if each were specified individually. For example:
	*/NAME.ARRAY<ENTER> NAME.ARRAY(1,1)="JOEY"=
NAME.ARRAY(1,2)="FRED FLINTS"=_
 .
 .
 .

[bookmark: _Toc449701938]String Windows ([)
The value of some string variables might be too long to be printed on a single screen. For these strings, the [command should be used to specify a subset of each string to be printed.
Format
	[n,m]

Parameter(s)
	n
	Starting column of the substring.

	m
	Length of the substring. If 0, turn off string windowing.

Description
If n and m are omitted, string windowing is turned off.
Example
Suppose the string RECORD contains over a hundred addresses separated by attribute marks, totaling over 2000 characters. When the user tries to print the output of RECORD in the Debugger, the entire screen is filled and the beginning of the string is scrolled off the screen. The programmer is only interested in characters towards the middle of the string; therefore, the number of characters printed out should be limited with:
	*[800,400]
*/RECORD

By limiting the output to 400 characters, the relevant portion of RECORD can be made accessible to the programmer.

[bookmark: _Toc449701939]Accessing Source Code
The L command has been enhanced to read source code from the data section of the file containing the object code, unless the Z command has been used to identify the source code.
[bookmark: _Toc449701940]Identifying Source Code (Z)
After entering the Z command, enter the file name followed by the program name, separated by a space. If file name and program are not specified, it is assumed that the source code is in the data section of the file containing the object code, and that the source code has the same name as the object code. For example, if the source code is in item-ID TESTIT in file BP, type:
	*Z BP TESTIT

If the Debugger prompt (*) returns, the command was accepted. If the command is illegal for any reason (misspelling, extraneous spaces, etc.), the message NO SOURCE will be printed.
The Z command not only enables source code listing but also permits the current source line to be printed at half-intensity each time the Debugger is re-entered, or when the ? or $ commands are used.
If the program calls an external subroutine, the Z command can be used again to point to the source code of that subroutine. However, it does not have to be reinvoked each time execution transfers between the program and the subroutine.
	NOTE
	It is not necessary to use the Z command if the source code exists in the same file as the object code.

[bookmark: _Toc449701941]Displaying Source Code (L, $, ?)
The L command may be used to read the source code from the data section of the file containing the object code (source code), and then display the source code.
Format
	L [n [-m] | *]

Parameter(s)
	n
	Shows line n in the source code.

	n-m
	Shows the specified range of lines in the source code.

	*
	Shows all lines of the source code.

For example, to print out lines 59 through 61:
	*L59-61
059 INPUT NAME:
060 IF NAME = "" THEN
061 GOTO EXIT

*

In addition to L, the $ and ? commands print out the current line number and the corresponding source line.
The $ and ? commands are identical in function. For example the current line can be shown with:
	*$<ENTER> CUST.ENTRY L 59 INPUT NAME: OBJECT VERIFIES

In the example, CUST.ENTRY is the name of the program, L 59 refers to line number 59, and INPUT NAME: is the statement on that line of code.
The source line (INPUT NAME:) will be printed at half-intensity. If the Z command is not used before the $ command, the source code will be omitted.

[bookmark: _Toc449701942]Using Breakpoints and Tracing
A breakpoint is a condition that invokes the Debugger whenever it is true. A trace variable is a variable that is defined to be printed automatically when a breakpoint is encountered. The mvBASIC Debugger can support up to 4 breakpoints and up to 6 trace variables at a time. Each external subroutine to the program will have its own breakpoint and trace table, independent of the one created for the program.
[bookmark: _Toc449701943]Establishing a Breakpoint (B)
The B command can be used to define a breakpoint in a program.
Format
	Bvar op value [&var op value]

Parameter(s)
	var
	Variable name to be tested. Alternatively, var can be the symbol $, specifying that the line number should be tested.

	op
	Operator. One of the following:

	
	=
	equals

	
	#
	not equals

	
	>
	greater than

	
	<
	less than

	value
	Value to test the variable by. Can be a numeric value, a string, or another variable in the program. If the value is a string, it must be enclosed in single or double quotes. A backslash is not accepted as a delimiter.

	&
	Logical connector for two conditions.

Description
Although spaces have been supplied above for clarity, spaces are not accepted in the syntax for the B command. If the command is accepted, a plus sign (+) is printed. If the breakpoint table is already full with its maximum of 4 breakpoints, the message TBL FULL will be printed.
To picture a breakpoint condition in mvBASIC language, think of it as being equivalent to entering the following throughout the program:
	IF var op expr [AND var op expr] THEN
 DEBUG
END

For example, to enter the Debugger whenever the variable COUNT is greater than 10 and the variable FOUND has a logical value of false (0), type:
	*BCOUNT>10&FOUND=0

Line numbers can be tested as well as variables. To specify that a line number is being tested, use a dollar sign ($) in place of a variable name. For example,
	*B$>75&$<95

causes the program to re-enter the Debugger whenever the program is executing a line between 75 and 95 (exclusively). Conditions comparing line numbers can be combined with conditions comparing variables. For example,
	*B$>75&FOUND=0

After a breakpoint condition is established with B, the program can continue execution with the G command or with a linefeed (CTRL+J). When a breakpoint condition is encountered, the Debugger is re-entered. The letter B with the breakpoint number and the line number will be printed, along with any trace variables. Trace variables are discussed in a later section.
[bookmark: _Toc449701944]Deleting a Breakpoint (K)
A breakpoint can be deleted from the breakpoint table with the K command.
Format
	K [n]

Parameter(s)
	n
	Delete breakpoint n. If n is omitted, delete all breakpoint conditions. v is determined by its position on the breakpoint table.

Description
If the command is accepted, a minus sign (–) is printed.
[bookmark: _Toc449701945]Defining Trace Variables (T)
The T command defines a trace variable. Alternatively, it turns the trace table on and off.
Format
	T [var]

Parameter(s)
	var
	Trace the variable var. If var is omitted, toggle the trace table on or off.

Description
If the trace variable is accepted, a plus sign (+) appears. If the trace table is already full with its maximum of 6 variables, the message TBL FULL prints.
If the T command is used without any arguments, it toggles the trace table on and off. If it is turned on, the word ON prints; if it is turned off, the word OFF prints. When the trace table is turned off, trace variables are not printed when a breakpoint is reached.
For example, to print the value of the variable COUNT every time a breakpoint is reached, type:
	*TCOUNT

[bookmark: _Toc449701946]Deleting a Trace Variable (U)
A variable can be deleted from the trace table with the U command.
Format
	U [var]

Parameter(s)
	var
	Delete variable var from the trace table. If var is omitted, all variables are deleted.

Description
If the command is accepted, a minus sign (–) will be printed.
[bookmark: _Toc449701947]Displaying Breakpoints and Trace Variables (D)
The breakpoint and trace tables can be displayed with the D command. For example:
	*D
T1 COUNT
T2 CUST.ARRAY(5)
T3
T4
T5
T6
B1 COUNT>10&FOUND=0
B2 $>75&FOUND=0
B3
B4

In the example, 2 trace variables and 2 breakpoints have been established.

[bookmark: _Toc449701948]Using Execution Control
Having entered the Debugger, the programmer often needs to execute the program again in order to see what actually happens.
The program can be controlled by establishing either breakpoints or execution steps before continuing execution, to specify that the Debugger should be reinvoked when a condition becomes true or when a number of statements have been executed.
[bookmark: _Toc449701949]Continue Execution (G)
The G command continues program execution.
Format
	G [n]

Parameter(s)
	n
	The line number to continue execution at. If omitted, the current line number will be assumed.

Description
Once the G command is used, the program will continue execution until the next breakpoint or, if an execution step has been specified, until the specified number of lines have been executed. See the next section for more information on execution steps.
A linefeed (CTRL+J) is a synonym for the G command with no arguments—that is, it will continue execution at the current line number. The linefeed has the advantage that it does not need to be followed by ENTER in order to be interpreted.
	CAUTION
	The G command should not be used if the operator has entered the Debugger because of a fatal run-time error. Continuing execution after a fatal error may result in corrupted data structures. In such an instance, the operator should exit the Debugger immediately with the END or OFF command.

[bookmark: _Toc449701950]Setting an Execution Step (E)
The E command establishes or removes an execution step. An execution step is a number of lines to be executed before automatically re-invoking the Debugger:
Format
	E [n]

Parameter(s)
	n
	Returns control to the programmer every n lines. If n is omitted or 0, turn off the previous E command.

Description
After enabling E, you can return to the program with the G command. With each n lines executed, the program will return to the Debugger with the current line number preceded by E. By using an execution step of 1, the program can be stepped through: the programmer can examine every source line before it is executed, thus tracing the action as it occurs.
While an execution step is in effect with E, breakpoints are disabled. The program will not stop at breakpoints until E has been disabled again.
Execution steps are global; that is, if the program enters a subroutine, the step remains unchanged.
[bookmark: _Toc449701951]Ignoring Breakpoints (N)
The N command specifies that the next n breakpoints should be ignored.
Format
	N [n]

Parameter(s)
	n
	Bypass n breakpoints before returning control to the programmer. If n is omitted, bypass 1 breakpoint.

Description
Although breakpoints are ignored by using the N command, the trace table is still printed at each bypassed breakpoint if it is enabled. By using the N command, the user can monitor the sequence of execution and the values of trace variables at each breakpoint, without re-entering the Debugger. The trace table can be disabled with the T command.
The N command is global; that is, if the program enters a subroutine, the N command will still be in effect.

[bookmark: _Toc449701952]Printing Output
The Debugger uses print commands to toggle program output, toggle line printing, and to spool output to the printer.
[bookmark: _Toc449701953]Toggling Program Output (P)
The P command toggles printing of output from the program. If P is toggled OFF, only output from the Debugger will be printed; the output from the program execution will not be shown. When output is disabled with the P command, the word OFF is printed; when it is re-enabled, the word ON is printed. The default setting is ON.
[bookmark: _Toc449701954]Toggling Line Printing (LP)
The LP command toggles printing of Debugger output on the line printer. If LP is toggled ON, output from the Debugger will be directed to the printer. When line printing is enabled with the LP command, the word ON is printed; when it is disabled again, the word OFF is printed. The default setting is OFF.
The LP command is an equivalent to the PRINTER ON and PRINTER OFF statements in mvBASIC.
[bookmark: _Toc449701955]Close the Printer (PC)
The PC command spools the Debugger printer output to the printer. The PC command in the Debugger is an equivalent of the PRINTER CLOSE statement in mvBASIC. All Debugger output held for the printer will be sent to print immediately, rather than after the program is completed.

[bookmark: _Toc449701956]Using the Return Stack
When the program transfers to an internal subroutine, the return address is pushed onto the return stack. The return address is the line the program transfers to at the end of the subroutine—that is, the line containing the statement immediately following the GOSUB that called the subroutine. If the subroutine calls another subroutine, the second address is pushed on top of the first address on the return stack, and so on for each embedded subroutine. As an ENTER statement is encountered, the top value on the stack is popped and taken as the return address for that subroutine.
[bookmark: _Toc449701957]Displaying the Return Stack (S)
The S command generates a list of line numbers on the return stack. Possible responses are:
	=line# SOURCE LINE
	Current subroutine will exit to line line#. When an ENTER statement is encountered, execution will transfer to line line#. (The corresponding source line is printed in half-intensity.)

	=line1# SOURCE LINE [=LINE2# SOURCE LINE...]
	Multiple subroutines are in effect. The current (top-level) subroutine will exit to line line1#. The next level subroutine will exit to line line2#, and so on. (Corresponding source lines are printed in half-intensity.

	STK EMP
	Nothing in stack.

	ILSTK
	Illegal stack. This usually signifies that an external subroutine is being executed. (External subroutines are not monitored by the return stack.)

[bookmark: _Toc449701958]Popping the Return Stack (R)
The R command pops the return stack. The program returns from the current subroutine as if an ENTER statement had been encountered at that point.
[bookmark: _Toc449701959]Modal Traps (M)
A modal trap occurs whenever an external subroutine is called, returned from, or when a mainline program enters another mainline program. In response to the modal trap, type M to toggle the modal trap ON or OFF depending on the trap’s previous state.
When a modal trap occurs it will be indicated by entering the BASIC debugger (*), and one of these prompts appears:
	*MCxxx
	Indicates the modal trap was caused by a CALL statement. xxx indicates the source code line number where the CALL statement occurred.

	*MRxxx
	Indicates the modal trap was caused by an ENTER statement. xxx indicates the source code line number where the ENTER statement occurred.

	*MExxx
	Indicates the modal trap was caused by an ENTER statement. xxx indicates the source code line number where the ENTER statement occurred.

In response to the above modal traps, type M at the * prompt to toggle the modal trap ON or OFF.

[bookmark: _Toc449701960]Additional mvBase specific commands
When in the debugger, and wanting to know specific information outside the program – e.g. the Time, or Which port, and so on there is a command that will allow temporary TCL access in the middle of the process:

The >> Command

Typing in >> will temporarily drop the developer to TCL
Typing in << returns control back to the program processor.

For example
* G279
PRINT “Here be monsters”
*>>
>WHO
298 MERRY
>Time
19:10:19
<<
*
PRINT “Here be monsters”

This command is particularly useful for checking the contents of a data record during program execution.
[bookmark: _Toc449701961]
Format, Data and Expressions
This section provides an overview of the essential components of the mvBASIC language. It describes program format, types of data, and how to store and access data within an mvBASIC program.
The following topics are presented in this section:
· Program Format
· Constants, Variables, and Data Types
· Building Expressions
· Advanced Data Types

[bookmark: _Toc449701962]Program Format
An mvBASIC program is a sequence of statements directing the computer to perform a series of tasks in a specified order. A statement consists of keywords, constants, and variables.
	Keywords
	Special words recognized by the mvBASIC compiler.

	Constants
	Values that do not change during the execution of a program.

	Variables
	Values that can change.

An mvBASIC source line corresponds to a single attribute in the source code item. The line can begin with a statement label, but statement labels are not mandatory for all lines in mvBASIC. More than one mvBASIC statement can be placed on the same line, as long as they are separated by semicolons (;).
The syntax for an mvBASIC source line follows:
Format
	[label] statement [; statement [; statement ...]]

Example
	100 PRINT "HELLO, WORLD" ; PRINT "GOODBYE, WORLD"

In the example, the statement label is 100. It is followed by two PRINT statements, separated by a semicolon (;). In each statement, the word PRINT is a keyword and is followed by a constant string value ("HELLO WORLD" or "GOODBYE WORLD"), delimited by quotation marks.
A statement cannot be broken onto more than one line, unless it contains a comma in its syntax (for example, in the EQUATE, COMMON, or DIMENSION statements), in which case it can be broken into multiple lines after each comma.
The following topics are presented in this section:
· Types of Statements
· Statement Labels
· Writing Readable Code

[bookmark: _Toc449701963]Types of Statements
mvBASIC statements can be broken into the following general categories:
	Input/Output Control
	Input statements control where the computer can expect data, and output statements control where the data is displayed or stored. The input or output device can be a terminal, a printer, a tape, a floppy disk, a file item or backup media device. Input statements include INPUT, READ, READT, and GET; output statements include PRINT, WRITE, WRITET, and SEND.

	Program Control (Sequence of Execution)
	In general, mvBASIC statements are executed in the order in which they appear, and program control statements are used to alter that sequence. Program control statements include IF, CASE, LOOP, FOR, GOTO, GOSUB, CALL, and EXECUTE.

	Assignment of Variables and Constants
	Assignment statements assign values to variables and names to constant values. Variables can be directly assigned with the ASSIGNMENT statement (=), and constants can be assigned with the EQUATE statement.

[bookmark: _Toc449701964]Statement Labels
A statement label is a unique identifier that identifies a particular program line. It consists of a string of numeric or alphanumeric characters at the beginning of a source line. Source lines do not require statement labels. If the program is directed to a statement label with the GOTO, GOSUB or INPUTTRAP statements, however, the label must exist somewhere in the program.
A numeric statement label can be any constant number (decimals allowed). Numeric statement labels can end with a colon (:), but a colon is not mandatory. An alphanumeric statement label must begin with a letter and be followed by any combination of letters, numbers, periods, or dollar signs. An alphanumeric statement label must be followed by a colon, or it is not recognized as a statement label.

[bookmark: _Toc449701965]Writing Readable Code
An mvBASIC program should be made relatively easy to read, both for the programmer and for those who must maintain the program. The readability of a program can be greatly enhanced by:
· Blank spaces to indent sections of code.
· Blank lines to group sections of code together.
· Recognizable variable and subroutine names.
· Comments or remarks to document a program.
When blank spaces or lines that are not part of a data item appear in a program line, they are ignored. Therefore, blanks can be used freely in order to improve the appearance and readability of a program. The programmer can use blanks to indent sections of code and make the program structure more apparent. Blank lines can also be used to set apart a subroutine or any other significant part of the program.
The programmer should make a habit of assigning recognizable names to variables and constants. It becomes much easier to keep track of what the variable signifies if variable names are kept coherent—for example, an array containing customer names and addresses would be easier to identify if it were called CUSTOMERS rather than X.
[bookmark: _Toc449701966]Using Remarks
Program documentation includes comments in the mvBASIC program that explain or identify various parts of the program. Comments are part of the source code only (the original program), and as such they are not executable. They do not substantially affect the size of the object code.
Comments must begin with one of these symbols:
	REM
*
!

To place a comment on the same physical line as another statement, the first statement must first be ended with a semicolon (;), as in this example:
	IF 2INT_SUM < 0 THEN
LOSS =2INT_SUM ; *CORRECTLY FORMATTED COMMENT
END ELSE PROFIT = 2INT_SUM

Comments cannot be placed between multiple statements on one physical line. For example, in the second line of the following example all the text following the * symbol is treated as part of the comment and is not executed:
	IF 2INT_SUM < 0 THEN
LOSS= 2INT_SUM ; *THE REST OF THIS LINE IS IGNORED ;
END ELSE

Comments can, however, be placed in the middle of a statement that occupies more than one physical line, as in this example:
	IF 2INT_SUM < 0 THEN
LOSS = 2INT_SUM
* THIS COMMENT IS ON A LINE OF ITS OWN
END ELSE PROFIT = 2INT_SUM

Remarks in the Object Code
A special form of comment can be used to embed a comment directly into the object code. A statement beginning with $* places the following text into the object code created when the program is compiled. For example:
	$* "OPERATING SYSTEM VERSION 2.5"

Comments in the object code are particularly useful for including the version number of the program, or for entering copyright information.

[bookmark: _Toc449701967]Constants, Variables, and Data Types
Constants are values that remain unchanged throughout program execution.
[bookmark: _Toc449701968]Assigning and Using Constants
Constants can be used directly, or they can be assigned a name with the assignment (=) or EQUATE statement.
For assigning a constant, the EQUATE statement is preferable since there is nothing to stop a constant assigned with = (equal sign) from being changed later in the program’s execution. A constant assigned with EQUATE, on the other hand, can never be changed: if EQUATE is used, the programmer is ensured that a constant will remain a constant.
The EQUATE statement is also more efficient, since a constant assigned with = needs to be reassigned each time the program is executed.
Example
	PRINT "HELLO, WORLD"

The string "HELLO, WORLD" is a constant string value used directly in the PRINT statement. Alternatively, the program might have read:
	EQUATE GREETING TO "HELLO, WORLD"
PRINT GREETING

By assigning the name GREETING to the constant string HELLO WORLD, it can be accessed by that name any time later in the program.
[bookmark: _Toc449701969]Assigning and Using Variables
Variables are symbolic names that represent stored data values and can change in value during program execution. The value can be explicitly assigned by the programmer, can be read as input, or can be the result of operations performed by the program during execution.
At the start of program execution, all variables are set to an unassigned state. Any attempt to use a variable in the unassigned state produces an error message, and a value of 0 is assumed.
Names for both variables and constants must begin with an initial alphabetic character. They can also include one or more digits, letters, periods, or dollar signs. (Note that hyphens and underscores are not valid in a variable name.) Uppercase and lowercase are interpreted differently. A variable name can be any length, but it cannot be the same as any reserved word.
[bookmark: _Toc449701970]Data Typing in mvBASIC
In many other programming languages, such as Pascal and PL/I, a distinction is made among types of data. In these languages, all constants, variables, and their data types (integer, real, string, character, etc.) have to be declared at the beginning of the program so that the compiler will know how to store the data. Furthermore, the size of the variable often has to be declared so that the compiler will know how much space to set aside.
In mvBASIC, on the other hand, no data typing is made by the compiler: all data typing is made at run time, by context. A variable can therefore alternate between numeric and string values within the program. The only thing to be careful of is that when string values are assigned in the program text, they must be delimited by single quotes ('), double quotes ("), or backslashes (\). Otherwise, they are assumed to be variable names.
There is, of course, a difference between the way a numeric value and a string value can be treated: it is unreasonable to expect a program to take the square root of the string CARL. In such a situation, however, a fatal error will not occur—when a string value is applied to a numeric function, a value of 0 is assumed, a warning message is printed, and the program continues from there. String operations, on the other hand, can be executed on numeric values without conflict.
The advantage to no data typing is obvious; less work for the programmer and more flexibility for the program. The disadvantage is that errors which one might expect the compiler to detect are not caught. For example, if a variable name is misspelled, the compiler will simply assume that it is a new variable, and the program will successfully compile without an error or warning. Similarly, if a string variable containing CARL were accidentally used in the SQRT function, the programmer would not find out until the program was executed.

[bookmark: _Toc449701971]Building Expressions
The assignment statement is used in mvBASIC to assign values to variables.
The following topics are presented in this section:
· Simple Assignment
· Using Operators and Functions
· Numeric Expressions
· String Expressions
· Logical Data (Booleans)

[bookmark: _Toc449701972]Simple Assignment
There are several forms of the assignment statement, but its most common use is of the form:
Format
	variable = expr

	variable
	Variable name.

	expr
	Valid expression. An expression is a value that is evaluated at the time of execution and can be anything from a simple constant to a complex sequence of variables, operators, and functions.

For a simple example, to assign the variable NUMBER to the constant number 4:
	NUMBER = 4

Similarly, to assign the variable NAME to the constant string FRED:
	NAME = "FRED"

[bookmark: _Toc449701973]Using Operators and Functions
In the preceding examples, the assignment is made to a simple constant. However, any valid expression can be used instead. A simple expression might be a variable name combined with an operator and a constant.
	Operators
	Perform mathematical, string, and logical operations on two surrounding values.

	Operands
	Surrounding values on which specified operations are performed.

Example
To assign the variable NUMBER2 to be NUMBER plus 1:
	NUMBER2 = NUMBER + 1

In this example, + is the operator, and NUMBER and 1 are the operands. NUMBER is interpreted as a variable name, and 1 is interpreted as a numeric constant. If NUMBER contains 4, then after the above statement, NUMBER2 will contain 5.
Another simple expression might involve an intrinsic function.
	Functions
	Perform mathematical, string, and logical operations on a value passed within parentheses.

For example, to assign the variable ROOT to the square root of NUMBER:
	ROOT = SQRT(NUMBER)

In this example, SQRT is the function and NUMBER is the value passed to it. If NUMBER contains 4, then after the above statement, ROOT will contain 2.
Multiple operators and functions can be combined in an expression to evaluate to a single value. For example, to assign NUMBER3 to be 1 plus the square root of NUMBER:
	NUMBER3 = SQRT(NUMBER) + 1

After the above statement, NUMBER3 will contain 3. Note that this is different from:
	NUMBER3 = SQRT(NUMBER + 1)

which will return into NUMBER3 the square root of 5, or 2.236.
Valid expressions can therefore be as simple as a constant or a single variable name, or they can consist of multiple operations to be evaluated at run time.

[bookmark: _Toc449701974]Numeric Expressions
Numeric data is represented as a sequence of digits (0 – 9) with an optional decimal point. A leading plus (+) or minus (-) sign might be used, but commas are not allowed. Any data containing any characters other than numbers and a single decimal point will be interpreted as a string. Some examples of numeric values are:
-34
42368.99
+3.1416
Numeric data can contain up to 19 digits, including a maximum of 9 decimal positions. See the PRECISION statement in Overview of mvBASIC Statements and Functions for information on how to set the maximum number of fractional digits.
[bookmark: _Toc449701975]Arithmetic Operators
Arithmetic operations range from the simplest calculations (such as COST = COST + 5) to complex expressions combining trigonometric and logarithmic functions. In general, when several arithmetic operations are used in one expression, they follow accepted mathematical guidelines to precedence. The arithmetic operators available to mvBASIC, in order of precedence, are listed as follows:
	Operator
	Operation
	Sample Expression

	+
	Unary plus
	+COST

	-
	Unary minus
	–COST

	*
	Multiplication
	COST * EXPENSES

	/
	Division
	COST / EXPENSES

	+
	Addition
	COST + EXPENSES

	-
	Subtraction
	COST – EXPENSES

In cases where operators equivalent in precedence (such as * and /) are used, the order of evaluation follows left to right.
[bookmark: _Toc449701976]Parentheses in Expressions
The order of evaluation can be changed by using parentheses. Operations on expressions enclosed in parentheses are performed before the others.
Example
	(14 * 8) + 12 / 2 + 2

In the example above, expression is evaluated as 112+6+2 or 120. On the other hand, the following arithmetic expression is evaluated as 14*20/4 or 70:
	14 * (8 + 12) / (2 + 2)

In arithmetic expressions parentheses must be placed correctly in order to obtain the desired result.
[bookmark: _Toc449701977]Character Strings in Arithmetic Expressions
If a character string variable that evaluates to a number is used within an arithmetic expression, the character string is treated as a numeric variable. That is, the numeric character string is converted to its equivalent internal number and then evaluated numerically within the arithmetic expression.
	55 + "22"

The preceding example is evaluated as 77. If a character string variable that does not evaluate to a number is used within an arithmetic expression, a warning message is displayed and the string is treated as zero.
The following example expression is evaluated as 55:
	55 + "TWENTY TWO"

A message displays, warning that the data is nonnumeric, resembling the following:
	[B16] LINE 16 NON-NUMERIC DATA WHEN NUMERIC REQUIRED; ZERO USED!

[bookmark: _Toc449701978]Intrinsic Mathematical Functions
An intrinsic function is a built-in mvBASIC function to be used on numeric operands. The following is a list of the mathematical functions available in mvBASIC:
	Function
	Description

	ABS
	Computes the absolute value of a given arithmetic expression.

	COS
	Returns the cosine value of the angle given in the expression.

	EXP
	Returns an exponential value that will raise the base number e (2.7183) to the value of the expression.

	INT
	Truncates the decimal portion of a given arithmetic expression and returns the integer value.

	LN
	Generates the natural logarithm (log base e) of the given expression.

	PWR
	Raises the value of an expression to the power denoted by a second expression.

	REM
	Divides an expression by another, and returns the remainder value only.

	RND
	Generates a random number within the range of 0 and the value of the expression minus 1.

	SIN
	Returns the sine value of the angle given in the expression.

	SQRT
	Computes the square root of any positive numeric expression.

	TAN
	Returns the tangent value of the angle given in the expression.

See Statement and Function Reference for full information on the syntax and behaviour of these functions.

[bookmark: _Toc449701979]String Expressions
String data consists of a sequence of ASCII characters. They can represent either numeric or nonnumeric information, and are limited in length to 248K.
Character string constants consist of a sequence of ASCII characters enclosed in apostrophes ('), double quotation marks ("), or backslashes (\). Some examples of character string constants are:
"EMILY DANIELS"
'$42,368.99'
'NUMBER OF EMPLOYEES'
"34 CAIRO LANE"
\"FRED'S PLACE" ISN'T OPEN\
The beginning and terminating delimiters must match. In other words, if you begin a string with a single quotation mark, you must use a single quotation mark to terminate the string. If one of the delimiters is used within the character string, a different delimiter must be used to begin and terminate the string. For example, using apostrophes to enclose the following string is incorrect:
	'IT'S A LOVELY DAY.'

Instead, the string should be delimited with double quotes (or backslashes), as follows:
	"IT'S A LOVELY DAY."

Two adjacent identical delimiters specify a null, or empty, string. Any ASCII character can be used in character string data except the ASCII character 10 (carriage return), which is used to separate the logical lines of a program.
	The CAT String Operator

String expressions can be concatenated, or linked, by using the concatenation operator (: or CAT) as follows:
	NAME = FIRST : LAST

or
	NAME = LAST CAT ", " CAT FIRST

If, for instance, the current value of FIRST is JANE and the current value of LAST is GREY, the preceding string expressions have the values:
	" JANE GREY "
" GREY, JANE "

Multiple concatenation operations are performed from left to right. Expressions in parentheses are evaluated before other operations are performed.
All operands in concatenated expressions are considered to be string values regardless of whether they are string or numeric expressions. However, the priority of arithmetic operators is higher than the concatenation operator. If both types of operator appear in the same expression, arithmetic operations are performed first.
For example:
	"JANE IS" : "2" + "2" : "3" : "YEARS OLD."

has the value:
	"JANE IS 43 YEARS OLD."

[bookmark: _Toc449701980]Logical Data (Booleans)
All data has a logical (or Boolean) value, which is to say that it can be computed as true or false. If the data contains only numeric values and the numeric value is zero (0), it is false; any other numeric value is true. If the data contains character string values other than the null string (""), it is true; the null string is false. Logical values are used for testing conditionals. If a statement reads:
	IF FOUND THEN...

the variable FOUND is tested to see if it is not null or zero. If it is not, then the condition is determined to be true, and the statements following the THEN clause are executed.
[bookmark: _Toc449701981]Relational Operators
Relational operators are used to compare both numeric and character string data. The result of the comparison, either true (1) or false (0), can be used for conditional statements. The relational operators are:
	Operator
	Relation
	Example

	EQ or =
	Equality
	X = Y

	NE or #
	Inequality
	X # Y

	>< or <>
	Inequality
	X <> Y

	LT or <
	Less than
	X < Y

	GT or >
	Greater than
	X > Y

	LE or <= or =<
	Less than or equal to
	X <= Y

	GE or >= or => or #<
	Greater than or equal to
	X >= Y

When arithmetic and relational operators are both used in a single expression, the arithmetic operation is always performed first.
The same relational operators can be applied to both numeric and string data, but the operations will be calculated differently according to the type of data in the operands. Relational numeric comparisons are calculated as expected, by comparing the literal value of the operands. String comparisons, however, are made by comparing the ASCII values of single characters from each string.
In string comparisons, characters are compared from left to right, and the first string to yield a higher numeric ASCII code equivalent is considered to be greater. If all of the ASCII codes are the same, the strings are considered equal. If the two strings have different lengths but the shorter string is otherwise identical to the beginning of the longer string, the longer string is considered greater than the shorter string. Note that leading and trailing blank spaces are significant, since the space character has an ASCII value of 032.
If both string values can be converted to numeric, then the comparison is always made numerically. If only one operand is numeric, the comparison will be made as if both were string values.
The following string comparisons are true and return a value of 1:
	"AA" < "AB"
"FILENAME" = "FILENAME"
"FILENAME" < "NAMEFILE"
"CL " > "CL"
"KG" > " KG"
"8/12/78"< "9/12/78"

[bookmark: _Toc449701982]Logical Operators
Logical operators perform Boolean operation tests on logical expressions. They have the lowest precedence among all operators: they are evaluated after all other operators have been evaluated.
The two forms of logical operation in mvBASIC are:
	Operator
	Syntax
	Definition

	AND
	x AND y
	True (evaluates to 1) if both x and y are true.

	&
	x & y
	True (evaluates to 1) if both x and y are true.

	OR
	x OR y
	True (evaluates to 1) if either x or y is true.

	!
	x ! y
	True (evaluates to 1) if either x or y is true.

The NOT function can be used to invert a logical value.
For example:
	IF FOUND AND QUIT = "Y" THEN...

The variable FOUND is tested to see if it is not null or zero, and is evaluated as true if it is not. Then the relational expression QUIT = "Y" is evaluated. If both FOUND and QUIT = "Y" are evaluated as true, then the condition as a whole is evaluated as true and the statements following the THEN clause are executed.
[bookmark: _Toc449701983]The MATCH Operator
The pattern matching operator, MATCH or MATCHES, can be used to compare a string expression to a pattern specification and return a value of 1 if they match. The syntax for a MATCH operation is:
	expr MATCH pattern-expr

The pattern is a general description of the format of the string and can be specified as a constant or as an expression. The pattern specification codes and their definitions are as follows:
	Pattern
	Definition

	nN
	n numeric characters.

	nA
	n alphabetic characters.

	nX
	n wildcards (any character).

	string
	Any literal string.

n must be a whole number. If n is 0, the relation is true only if all the characters match the specified type. (Note that the null string ("") matches 0N, 0A, and 0X.)
For example,
	ZIP.CODE MATCH "0N"

will be true only if all the characters in the string ZIP.CODE are digits. Patterns can be combined in any sequence.
For example,
	IF LICENSE MATCHES "3N'-'3A" THEN...

confirms that a license number entered consists of 3 digits, a dash, and 3 alphabetic letters.
[bookmark: _Toc449701984]Logical Functions
Logical functions are functions that return a value of 0 or 1. The following are the logical functions available in mvBASIC:
	Function
	Description

	ALPHA
	Tests the given expression for an alphabetical value.

	NOT
	Returns the logical inverse of a given expression.

	NUM
	Tests the given expression for a numeric value.

See Statement and Function Reference for a full description of the syntax and behaviour of these functions.

[bookmark: _Toc449701985]Overview of mvBASIC Statements and Functions
This section is designed to give a brief topical overview of the statements and functions in mvBASIC. (For full descriptions of the statements and functions, see Statement and Function Reference.) The topics of this section are covered in the following order:
· Assignment Statements
· Intrinsic Functions
· Internal Program Control
· External Program Control
· Sending Output to the Screen and Printer
· Terminal Input
· Dynamic Array Processing
· Generalized String Processing
Dimensioned Arrays
Reading and Updating File Items
Reading and Writing Tapes or Floppy Disks
Communications
Execution Locks
Compiler Directives
Miscellaneous Statements and Functions
The Error Message Processor

[bookmark: _Toc449701986]Assignment Statements
The simple assignment statement in mvBASIC is of the form var = expr. A full list of operators is given in Format, Data, and Expressions. For example, the variable NUMBER can be set to the value 7 with:
	NUMBER = 7

Any valid expression can be used in an assignment statement. For example, NUMBER2 can be assigned the value of NUMBER plus 2 with:
	NUMBER2 = NUMBER + 2

mvBASIC also supports operator assignment. For example, 2 can be added to the value of NUMBER with:
	NUMBER += 2

as a shorthand for:
	NUMBER = NUMBER + 2

Accepted operators for operator assignment are:
	+
	Addition

	-
	Subtraction

	*
	Multiplication

	/
	Division

	:
	Concatenation

Initializing Variables (CLEAR)
The CLEAR statement acts to initialize all variables to the value 0. It cannot be used to initialize a single variable, however, and initializing all variables to 0 may result in errors due to unassigned variables remaining undiscovered.
Assigning Constants (EQUATE)
The EQUATE statement is used to make a variable functionally equivalent to another or to assign a constant. It cannot be used to assign a variable, since values assigned with an EQUATE statement cannot be reassigned during the program.
The EQUATE statement assigns values at compile time. No operators or functions can be incorporated into an EQUATE statement, with the exception of the CHAR function. Thus, the EQUATE statement can be used to supply a meaningful name for a special character in a program or for an element of a dimensioned array, for example, to equate AM to an attribute mark:
	EQUATE AM TO CHAR(254)

or to equate QTY to element 4 of the dimensioned array INVENTORY:
	EQUATE QTY TO INVENTORY(4)

[bookmark: _Toc449701987]Intrinsic Functions
An intrinsic function is a built-in mvBASIC function to be used on numeric operands.
Numeric Functions
In addition to the standard numeric operators (+, -, *, /), mvBASIC provides several functions for evaluating numeric calculations.
	ABS
	Returns the absolute value of a given expression. The absolute value of a number is its positive value, or the difference between itself and zero.

	INT
	Gives the integer value of an expression. It truncates the decimal portion of a number and returns the result.

	REM
	Takes two arguments and returns the remainder value when the first expression is divided by the second.

	SQRT
	Returns the square root of a positive expression.

	RND
	Returns a random number between 0 and the given expression minus 1.

	PWR
	Takes two arguments and returns the first value to the power of the second.

In addition, the following trigonometric functions are available in mvBASIC:
	SIN
	Returns the sine of the angle.

	COS
	Returns the cosine of the angle.

	TAN
	Returns the tangent of the angle (SIN/COS).

	LN
	Returns the natural logarithm (log base e) of the expression.

	EXP
	Returns e to the power of the expression (the inverse of LN).

The accuracy of each numeric function is dependent on the decimal precision used by the program; i.e., the number of decimal places to which numeric values are calculated. By default, all numeric values are calculated to four decimal places. To reassign this value, use the PRECISION statement. The maximum precision supported by mvBASIC is 9.
Logical Functions (NOT, NUM, ALPHA)
A logical function, or Boolean function, is one which returns either 0 or 1. A return value of 0 is taken to mean false, and a return value of 1 is taken to mean true. Logical functions are most useful in conditional statements (IF, CASE), or in the exit for loops.
In addition to the logical operators (=, <>, >, >=, <, <=, MATCH), the following intrinsic logical functions are supported in mvBASIC:
	NOT
	Returns the logical inverse of a given expression. That is, if the expression evaluates to 0 or the null string (" "), the NOT function returns 1; if the expression evaluates to anything other than 0 or the null string, the NOT function returns 0.

	NUM
	Returns 1 if the given expression is numeric, or 0 if it is nonnumeric. (Note that the NUM function might return 0 for a clearly numeric value if it contains more decimal places than the current precision.)

	ALPHA
	Returns 1 if the given expression is alphabetic, or 0 if it is non alphabetic.

Example
Suppose a program expects a positive number in Attribute 3 of a file item. The source code might read:
	PRICE = RECORD<3>
IF NOT(NUM(PRICE)) THEN
PRINT "ERROR — NON-NUMERIC DATA IN ATTRIBUTE 3."
STOP
END ELSE
IF PRICE < 0 THEN
PRINT "ERROR — NEGATIVE DATA IN ATTRIBUTE 3."
STOP
END
END

Using the Boolean operators (AND, OR), the same code might read:
	PRICE = RECORD<3>
IF NOT(NUM(PRICE)) OR PRICE < 0 THEN
PRINT "ERROR IN ATTRIBUTE 3 — ":
PRINT "POSITIVE NUMBER EXPECTED."
STOP
END

[bookmark: _Toc449701988]Internal Program Control
Statements in an mvBASIC program are executed in the order in which they appear in the source code. Program control statements are those which can be used to alter that sequence. This section discusses the internal program control constructs that do not involve other programs, external subroutines, or TCL commands. More advanced program control statements are discussed later in this section.
[bookmark: _Toc449701989]The IF Conditional
The IF construct is used to execute a statement (or series of statements) if a condition has a logical value of true, and (optionally) a different set of statements if the condition has a logical value of false.
[bookmark: _Toc449701990]The THEN and ELSE Clauses
Either a THEN or ELSE clause (or both) must be supplied with IF. The syntax of the THEN and ELSE clauses is important to understand, because they are used not only in IF statements, but also in numerous file I/O, tape I/O, floppy disk I/O, and communication statements.
THEN and ELSE clauses can be written on the same statement line in the following manner:
	IF NET >= 0 THEN PRINT "PROFIT IS ": ELSE PRINT "LOSS IS ": PRINT ABS(NET)

If there are multiple conditional statements for either the THEN or ELSE clause, they can be separated by semicolons (;). For example:
	IF NET >= 0 THEN FLAG = 1; PRINT "PROFIT IS ": ELSE FLAG = 0; PRINT "LOSS IS ": PRINT ABS(NET)

However, the IF statement becomes difficult to read if the THEN and ELSE clauses are written on a single line. It is preferable to write it on several lines, even if the conditional statement is very short.
When splitting an IF statement onto several lines, the THEN or ELSE keyword must end a program line, with the conditional statements beginning on the next. At the end of the conditional statements, an END statement must be used to group them together.
Thus, if the condition tested by IF is true, all statements between the THEN clause and the corresponding END statement are executed; otherwise, all statements between the ELSE clause and the corresponding END statement are executed.
So the above lines of a program printing out profit or loss on a transaction might read:
	IF NET >= 0 THEN
FLAG = 1
PRINT "PROFIT IS " :
END ELSE
FLAG = 0
PRINT "LOSS IS " :
END
PRINT ABS(NET)
NULL Statements

NULL statements are often included in THEN or ELSE clauses as placeholders. A NULL statement performs no action; however, a programmer can use NULL statements to make the logic of a conditional somewhat clearer: for example, if a programmer wanted to test if a value was numeric, he might write:
	IF NUM(PRICE) THEN
NULL
END ELSE
PRINT "ERROR: NON-NUMERIC PRICE. STOP"
STOP
END

There are ways of doing this without using a NULL statement (by using the NOT function in the condition, or by omitting the THEN clause entirely). However, a programmer might prefer to use NULL statements to make conditionals easier to read.
[bookmark: _Toc449701991]CASE Constructs
The CASE construct acts to perform multiple IF conditionals. It tests several conditions until one returns a value of true. It then executes the associated set of statements.
A CASE construct must begin with a BEGIN CASE statement and end with an END CASE statement. In between, each CASE statement tests a single condition, and, if true, the statements between the current CASE and the next CASE are executed. The program then jumps to the position after the END CASE statement, ignoring all remaining CASE statements in that group.
For example, the above profit-or-loss example might read:
	BEGIN CASE
CASE NET > 0
PRINT "PROFIT IS " : NET
CASE NET < 0
PRINT "LOSS IS " : ABS(NET)
CASE NET = 0
PRINT "NO PROFIT OR LOSS ON THIS TRANSACTION."
END CASE
Loops (LOOP, FOR)

Program loops are constructs that repeat the same sequence of statements while a condition holds true or until a condition is met.
[bookmark: _Toc449701992]The LOOP Construct
The LOOP statement is the general-purpose looping construct in mvBASIC. It has (optionally) two sets of statements, the first of which is executed before testing the condition clause, and the second of which is executed only if the condition is verified. The condition is written as either a WHILE or an UNTIL clause. If the WHILE clause is used, the loop will continue if the condition is still true; if the UNTIL clause is used, the loop will continue if the condition is still false.
The following example will continue to prompt for a number until a numeric value is entered:
	LOOP
PRINT "ENTER A NUMBER":
INPUT NUMBER
UNTIL NUM(NUMBER) DO
PRINT "NUMERIC INPUT EXPECTED!"
REPEAT

The UNTIL clause can be replaced with a WHILE by negating the condition:
	WHILE NOT(NUM(NUMBER)) DO

[bookmark: _Toc449701993]FOR Loops
In its simplest form a FOR loop performs a set of statements while incrementing a number by 1. When the number reaches or surpasses a specified maximum, the FOR loop exits. For example, a program printing out the first ten perfect squares might read:
	FOR I = 1 TO 10
 PRINT I * I
NEXT I

In mvBASIC, the FOR loop has been enhanced in two ways: an increment other than 1 can be specified with the STEP clause, and the WHILE and UNTIL clauses of the LOOP statement have been incorporated into it.
[bookmark: _Toc449701994]Stopping a Program (STOP, ABORT, END)
Two statements will cause an immediate stop to program execution: the STOP statement and the ABORT statement. The difference between them is that if the current program is called by a Proc or another program, the STOP statement will return to the calling Proc or program, but an ABORT statement will return directly to TCL.
In general, STOP statements are used for a normal or nonfatal termination of a program, and an ABORT statement is used for abnormal termination.
STOP and ABORT are often used in ELSE clauses to file I/O, tape I/O, floppy disk I/O, or communication statements, when the program becomes pointless if the statement fails. STOP statements are also used between the main part of a program and its internal subroutines. When a program is written with internal subroutines at the end, a STOP statement is necessary to ensure that the subroutines are not directly executed at the end of the program.
[bookmark: _Toc449701995]The END Statement
Beyond its function for delimiting THEN or ELSE statements, the END statement is also used to designate the end of compilation. When the compiler reaches an END statement that does not correspond to a THEN, ELSE, or LOCKED clause, all compilation stops. Any statements or subroutines that come after the END statement in the source code will be ignored.
[bookmark: _Toc449701996]Internal Subroutines (GOSUB, RETURN)
An internal subroutine is a discrete sequence of statements starting with a statement label and ending with a RETURN statement. In the source code, subroutines are placed after the main part of the program, and precautions are generally taken to ensure that they are never executed directly. Internal subroutines are executed by GOSUB statements, which point to the statement label.
Example
A subroutine labelled REPORT prints a report of the session’s transactions. The REPORT subroutine might call the following code:
	PRINT "PRINTING A REPORT ..."
GOSUB REPORT
DISPLAY "REPORT PRINTED."
The REPORT subroutine might read:
REPORT:
PRINTER ON
PRINT "NUMBER OF TRANSACTIONS" ,
NO.OF.TRANS
.
.
.
PRINTER CLOSE
PRINTER OFF
RETURN

When the GOSUB is executed, program control will transfer to the statement label REPORT and will continue until the RETURN statement is encountered. Program control will then continue with the statement following the GOSUB, and the message REPORT PRINTED will be displayed to the screen.
The GOTO Statement
The GOTO statement is often grouped together with GOSUB, because they share the same syntax and perform similar functions. However, the GOTO statement serves only to transfer program execution to the statement label and will never return unless another GOTO is used.

[bookmark: _Toc449701997]External Program Control
The CALL statement transfers execution to an external subroutine.
[bookmark: _Toc449701998]External Subroutines (CALL, SUBROUTINE, RETURN)
An external subroutine is a sequence of statements that performs a discrete function, compiled separately from the calling program. Unless the subroutine is in the same file as the calling program, it must be cataloged in the account before being called.
The first statement of the subroutine must be the SUBROUTINE statement, and the last statement executed must be the RETURN statement. The SUBROUTINE statement can take several parameters that correspond to the parameters on the CALL statement that calls the subroutine. The nth parameter on the SUBROUTINE statement and the nth parameter on the CALL statement become equivalent.
Example
Suppose a simple subroutine named ADDEMUP is called with the following source lines:
	PRINT "ENTER A NUMBER":
INPUT NUMBER1
PRINT "ENTER ANOTHER NUMBER":
INPUT NUMBER2
CALL ADDEMUP(NUMBER1, NUMBER2, NUMBER3)
PRINT NUMBER1 : " PLUS " : NUMBER2 : " IS " : NUMBER3

and the subroutine ADDEMUP reads:
	SUBROUTINE ADDEMUP(A,B,C)
C = A + B
RETURN

The value of NUMBER1 is passed to the variable A in the subroutine, the value of NUMBER2 is passed to B, and the value of NUMBER3 is passed to C. At the conclusion of the subroutine, the parameters are returned with their new values (if any). Thus, ADDEMUP serves to place the sum of the first two numbers in the variable NUMBER3.
[bookmark: _Toc449701999]Passing Parameters (COMMON)
The alternative to passing parameters with the CALL and SUBROUTINE lines is the COMMON area, by which several programs can share the same variables.
The COMMON statement permits multiple programs and subroutines to use the same variables by accessing them according to the sequence in which they are stored. Each program using the COMMON area must include a COMMON statement, and the variables will be considered equivalent according to their positions. For example, in the simple example of a subroutine shown earlier in this section, the main program might have read:
	COMMON NUMBER1, NUMBER2, NUMBER3
PRINT "ENTER A NUMBER":
INPUT NUMBER1
PRINT "ENTER ANOTHER NUMBER":
INPUT NUMBER2
CALL ADDEMUP
PRINT NUMBER1 : " PLUS " : NUMBER2 : " IS " : NUMBER3

and the subroutine ADDEMUP:
	SUBROUTINE ADDEMUP
COMMON A, B, C
C = A + B
RETURN

The variable NUMBER1 in the main program and the variable A in the subroutine are considered equivalent because of their positions in the COMMON statement. The same is true of NUMBER2 and B, and of NUMBER3 and C.
[bookmark: _Toc449702000]Executing a TCL Command (EXECUTE, CHAIN, DATA)
The CHAIN and EXECUTE statements can both be used for executing a TCL command. EXECUTE is by far the more powerful of the two statements, and is preferred to CHAIN.
The EXECUTE statement executes any TCL command and returns to the current program. In addition, the RETURNING clause can be used to determine error messages which may have resulted, and the CAPTURING clause can be used to capture the terminal output generated by the command.
The CHAIN statement will execute the command but will not return to the calling program.
[bookmark: _Toc449702001]The DATA Statement
The DATA statement places data in the secondary output buffer, or data stack. If the data stack is not empty, any subsequent requests for input will accept the response directly from the data stack, and the user will not be given the opportunity to respond.
The data stack is helpful for executing TCL commands that request information that the program can supply. For example, if a programmer wishes to copy a file item before altering it in a program, the COPY command might be used (rather than writing a new item with the WRITE statement). The COPY command requests the operator to supply the new item-ID, so the DATA statement could be used to store the new item-ID on the data stack before using EXECUTE to run the COPY command.
Before EXECUTE returns to the calling program, it checks the data stack for input. If the data stack is not empty, its contents will be sent to TCL. Any data left in the data stack will be cleared upon exit from EXECUTE.
[bookmark: _Toc449702002]Using EXECUTE with Select-lists
Although the mvBASIC language has a SELECT statement for creating a select-list, the EXECUTE statement can be used to run one of the INFO/ACCESS select-list generators (e.g., SELECT, SSELECT, QSELECT). The INFO/ACCESS select-list generators are often preferable to the SELECT statement because they can include selection expressions. Selection expressions cannot be supplied with the mvBASIC SELECT statement.
A select-list generated by EXECUTE will be placed in the external select-list variable. The select-list will be unavailable to subsequent EXECUTE statements; however, the DATA statement can be used to stack a SAVE-LIST command to be executed before returning to the program, and a future EXECUTE statement can be used to run a GET-LIST to retrieve it. See Reading and Updating File Items later in this section for more information on select-lists.
[bookmark: _Toc449702003]Executing Another mvBASIC Program (ENTER)
To execute another mvBASIC program, the EXECUTE statement is recommended. However, there is an ENTER statement which acts only to execute another mvBASIC program and then exit without returning to the calling program.
[bookmark: _Toc449702004]CAP-HUSH-ON and CAP-HUSH-OFF Commands
The CAP-HUSH-ON command turns off the display of captured output for the issuing process. The CAP-HUSH-OFF command turns on the display of captured output for the issuing process. Both commands are most effectively used within an EXECUTE statement.
[bookmark: _Toc449702005]Executing a Windows Command Line Command
Windows command line commands can be executed by prefixing them with the bang (!) sign in an EXECUTE statement. The output from the executed command can be stored in a variable by use of the CAPTURING clause. For example:
	EXECUTE "! dir /w " CAPTURING DirectoryList

This example does a wide directory listing of the current directory using the Windows DIR command and puts the results into the mvBASIC variable DirectoryList.

[bookmark: _Toc449702006]Sending Output to the Screen and Printer
There are two standard output devices available to an mvBASIC program:
· Terminal screen
· Printer
[bookmark: _Toc449702007]Output Devices (PRINT, CRT, DISPLAY)
The CRT and DISPLAY statements send output only to the terminal screen, and the PRINT statement sends its output either to the terminal screen or to the printer, depending on which has been selected as the output device. The syntax of all three statements is identical, except that the PRINT statement accepts the ON keyword for multiple print units.
In a broader sense, file items and attached tape devices or floppy disk devices can also be considered output devices. See Reading and Updating File Items and Reading and Writing Tapes or Floppy Disks later in this section for information on file I/O, tape I/O, and floppy disk I/O.
[bookmark: _Toc449702008]Sending Output to the Printer (PRINTER)
The PRINT statement by default sends output to the screen. There are two ways, however, to force the PRINT statement to send output to the printer: by the P option to the RUN command, or by the PRINTER ON statement. The PRINTER ON statement signifies that all subsequent PRINT statements will send output to a Spooler print unit. At the end of the program, the print unit will be sent to the Spooler.
The PRINTER OFF statement returns to the default condition: all PRINT statements after a PRINTER OFF statement will send output to the terminal screen again. To print output before the end of the program, the PRINTER CLOSE statement is available to send everything in the print unit directly to the Spooler.
[bookmark: _Toc449702009]Print Units
When output is being sent to a printer, the ON keyword to PRINT becomes significant. Generally, all printer output is sent to print unit 0. However, if several reports are being generated simultaneously, the ON keyword can be used to place output in several different print units (ranging from 0 to 599).
For example, suppose a program generates two reports, one displaying the names of all customers who are two months late on their bills, and the other displaying the names of all customers who have birthdays approaching. The program goes through each customer’s record in sequence. If bills have not been paid, the customer’s name and address are printed from print unit 0, and the customer is billed. If the customer has a birthday coming up, the name and address are printed from print unit 1, and the customer is sent a birthday card. At the end of the program, two complete (and hopefully distinctive) lists are printed out.
[bookmark: _Toc449702010]Formatting and Positioning Output
Normally output will be printed at the current position, and will force a carriage return and linefeed at the end of output. The print expression, however, may include features to tabulate output, to suppress the carriage return and linefeed, and (in the case of screen output) to place output at any coordinate, clear the screen, clear the line, or access any of several terminal capabilities.
In addition, format can be masked directly in an output expression. Format masking is a mechanism in mvBASIC by which data can be converted into a readable format without changing the data itself.
[bookmark: _Toc449702011]Tabulation and Carriage Return Suppression
A comma (,) in the print expression will force a tab to be printed at that position. A trailing colon (:) specifies that the automatic carriage return and linefeed will be suppressed in output.
[bookmark: _Toc449702012]Formatted Screens (@)
The @ function provides direct control of a terminal screen. When the @ function is used in a print expression, it generates a command sequence that is sent to the terminal screen, and the screen responds accordingly. In particular, the @ function can be used to move the cursor to any coordinate position on the screen. It can also be used to clear the screen, to clear to the end of the line, or to place the text in blinking mode. A full list of the features for the @ function is included in the reference page for @.
Using the @ function, a formatted screen can be generated. Programs can use the @ function to clear the screen and show a menu by sending menu options to different coordinates on the screen. The programmer might choose to turn the echo feature off to prevent user input from appearing on the screen.
For formatted screens, the INPUT @ statement can take input from any coordinate on the screen. In addition, the INPUT @ statement performs format masking directly on the input. See Terminal Input later in this section for more information on INPUT @.
Example
To print a menu on the screen, the source code might read:
	PRINT @(-1) :
PRINT @(8,3) : "CHOOSE ONE: " :
PRINT @(16,6) : @(-13) : "E" : @(-14) : "DIT AN ENTRY" :
PRINT @(16,8) : @(-13) : "N" : @(-14) : "EW ENTRY" :
PRINT @(16,10) : @(-13) : "D" : @(-14) : "ELETE AN ENTRY" :
PRINT @(16,12) : @(-13) : "Q " : @(-14) : "UIT" :
ECHO OFF
INPUT @(1,23) : ANSWER,1

The code in the preceding example does the following:
· The first line of code clears the screen.
· The second line prints CHOOSE ONE at column 8, row 3.
· The third through sixth lines print the menu options at specific coordinates, with the first character in reverse video mode. Thus, the first character stands out on the screen.
· The seventh line turns off the echo.
· The eighth line places the cursor at the bottom of the screen and accepts a single character as a response.
[bookmark: _Toc449702013]Masking Data (FMT)
Numbers are stored in internal format. Internal format is a representation of data which makes calculation easier but is more difficult to read. Format masks convert numbers into a format that is easier to read. In addition, the ICONV function converts string data into internal format, and the OCONV function converts strings back into external format.
For example, if the dollar amount $14,912.15 were stored with the dollar sign and comma, then any calculations on that number would be impossible—dollar signs and commas are not permitted in numeric values. Also, if interest is being calculated on this dollar amount, it would be much more accurate if more than two decimal places were being kept.
Suppose that the given dollar amount represents the balance of a bank account. The bank keeps this figure to 5 digits of precision, to ensure that any calculations are accurate—suppose the actual figure stored is 1491214987. When this figure needs to be printed in a monthly statement, the data needs to be converted into a readable form. The program which generates the monthly statements will therefore print the data with a format mask, which will descale the number, round it to 2 decimal places, enter a comma where necessary, and precede it with a dollar sign. If the variable BALANCE contains 1491214987, and the program contains the lines:
	PRECISION 4
.
.
.
PRINT BALANCE "29,$"
the output will be:
$14,912.15

A data mask can be implemented in two ways: either by using the FMT keyword, or by simply following data with the mask expression (as shown in the example). In the source code, the 2 signifies that the output should be rounded to two decimal places. The 9 is a descaling code, which determines where to place the decimal point—in this case, with a precision of 4 and a descaling code of 9, the decimal point is placed (9-4)=5 digits from the right. The, signifies to enter a comma every thousands place, and the $ says to precede the expression with a dollar sign. There are many other codes available for masking data. For a full list and explanation of these codes, see the reference page for FMT in Statement and Function Reference.
[bookmark: _Toc449702014]Headings and Footings
The HEADING statement can be used to specify a heading to be printed at the top of each page. It also has the facility to set up page parameters for use by FOOTING and PAGE.
If the output is being sent to the screen, then output will stop after each page of text once a HEADING statement is used. If a FOOTING statement is specified, a footing will be supplied at the end of the page, and the program will wait for a carriage return before continuing with output.
The PAGE statement can be used to force a new page at any point in the program, as long as a HEADING has been specified.
Note that HEADING, FOOTING, and PAGE will only affect the same output device that PRINT does. If multiple print units are being printed together, HEADING, FOOTING, and PAGE will affect print unit 0 (the default).
[bookmark: _Toc449702015]The PRINTERR Statement
The PRINTERR statement allows mvBASIC programs to produce output messages using the Error Message Processor and the ERRMSG file.
Before the introduction of the PRINTERR statement, the Error Message Processor was only available through the use of the STOP and ABORT statements, both of which terminated the program.

[bookmark: _Toc449702016]Terminal Input
Use the INPUT statement to request terminal input.
[bookmark: _Toc449702017]The INPUT Statement
In the simplest form of terminal input, the user can be prompted for a value for the variable ANSWER with the statement:
	INPUT ANSWER

This statement will print the prompt character on the screen and wait for terminal input at that position. The user can type a response and press ENTER for the response to be accepted. (The prompt character can be reassigned with the PROMPT statement.)
[bookmark: _Toc449702018]Variations on INPUT
There are several variations to the INPUT statement. For example, suppose that the answer the user is prompted for can be only Y for yes or N for no. The INPUT statement can specify that only one character is expected, with the statement:
	INPUT ANSWER,1

The maximum number of characters that will be accepted as input is 1. When 1 character is typed by the user, the program will assume that the input is complete and continue execution immediately, without waiting for a carriage return. Any positive integer can be used in an INPUT statement as the maximum length of input, up to the size of the input buffer (140).
To force the program to wait for a carriage return before accepting the response, an underscore (_) can be placed at the end of the INPUT statement. By using the underscore, the program will send a beep to the terminal if the user tries to type in more than the maximum number of characters, but it will wait for a carriage return before accepting the input. Thus the user is given a chance to verify the response before continuing with the program.
In addition, the INPUT statement can be used to print data in the field to be written. The field might contain a default answer, to be accepted (by pressing ENTER) or to be reassigned (by backspacing, typing the new answer, and pressing ENTER). The field might also be filled by a fill character, showing (for example) 5 asterisks when a 5-digit zip code is requested. The only valid fill characters are zeros and asterisks.
A FROM clause is supplied with the INPUT statement, for accepting input from a remote line. See Communications later in this section for more information on receiving input from a remote line.
[bookmark: _Toc449702019]Input from the Type-ahead Buffer (INPUTIF)
The INPUTIF statement accepts input only from the type-ahead buffer. The type-ahead buffer contains characters which have been typed between input requests, to be supplied as a response to the next input request.
The INPUTIF statement follows the same syntax as the INPUT statement, except that it requires either a THEN or ELSE clause (or both). If there is at least one character in the type-ahead buffer, the program will wait for a carriage return if one was not already in the type-ahead, and the THEN statements will be executed. If the type-ahead is empty, the ELSE clause will be instantly executed: the INPUTIF statement will not wait for text if the type-ahead is empty.
Example
If a program expects a response within thirty seconds, the source code might read:
	SLEEP 30
INPUTIF RESPONSE ELSE
STOP
END

The TA function returns the number of characters in the type-ahead buffer for the specified line. In addition, the TA statement can toggle the type-ahead feature on and off, or clear the type-ahead buffer of the current process. See Communications later in this section for more information on the type-ahead feature.
[bookmark: _Toc449702020]Masked Input Statements (INPUT @)
The INPUT @ statement combines two invaluable enhancements to the INPUT statement: it accepts screen coordinates for the input string, and it allows a mask to be applied directly on the input.
The INPUT @ statement takes screen coordinates as arguments, and places the cursor (printing the prompt character) at that position. Once the response has been supplied, the INPUT @ statement compares it and translates it against the mask (if any). If the response does not match the mask, an error message is printed at the last line of the screen and the user is prompted again. The input data is then converted into internal format for storage.
For example, take the case of a screen-formatted program which prompts for a date and then translates it into internal format. Using the standard INPUT statement, the program would have to use a loop to place the cursor at the right position, prompt for the input, test for every way a date can be written (JUNE 4 1965, 4 JUN 1965, 6/4/65, 06/04/1965, 6-4-65, etc.), and then convert it to internal format. However, with the INPUT @ statement, the programmer can simply write:
	INPUT @(14,10) BIRTHDATE "D"

	D
	Specifies an internal date conversion is performed.

See Sending Output to the Screen and Printer for more information on data masking.
[bookmark: _Toc449702021]INPUTTRAP, INPUTNULL and INPUTERR
Several statements were designed to be used concurrently with INPUT @.The INPUTTRAP and INPUTNULL statements were designed to provide escapes from the internal loop of INPUT @. The INPUTNULL statement specifies a character which will be interpreted as the null string by INPUT @. The INPUTTRAP statement allows the programmer to specify characters which, if supplied as answers to INPUT @, will branch to another statement label. Using INPUTTRAP, the operator can be told, in a menu program for example, that pressing ESC at any prompt will exit the program, and pressing CTRL+Z will return to the main menu.
In addition, the INPUTERR statement prints a message on the last line of the screen. This message will be cleared when correct input is taken by a succeeding INPUT @ statement. The INPUTERR statement can be used to print a message about what sort of input is expected, or it can be used in a loop with INPUT @ if a response requires further testing.
Example
If the programmer requires a date within the next year, the code might read:
	TODAY=DATE()
VALID = 0
INPUTERR "PLEASE ENTER A DATE WITHIN THE NEXT YEAR"
LOOP
INPUT @(14,10) RES.DATE "D"
BEGIN CASE
CASE RES.DATE < TODAY
INPUTERR "INVALID INPUT. PLEASE ENTER A
FUTURE DATE."
CASE RES.DATE > TODAY + 365
INPUTERR "PLEASE ENTER A DATE WITHIN THE NEXT YEAR."
CASE 1
VALID = 1
END CASE
UNTIL VALID DO REPEAT

See Sending Output to the Screen and Printer for more information both on data masking and on formatted screens.
[bookmark: _Toc449702022]INPUT and the Data Stack
If the data stack is not empty, its contents will be supplied to any terminal input statement, and the user will not be prompted. The data stack is assigned with the DATA statement. The SYSTEM(10) function can be used to determine whether the data stack is empty.
See External Program Control for more information about the data stack.

[bookmark: _Toc449702023]Dynamic Array Processing
mvBase stores all data as a string. File items are separated by segment marks, and lines in file items are separated by attribute marks. For processing data in file items, therefore, mvBASIC supplies several powerful string functions. Using these functions, fields in a file item can be distinguished and processed separately.
There are two categories of string function: those which require a delimiter to be specified, and those which assume the dynamic array delimiters.
[bookmark: _Toc449702024]File Items and Dynamic Arrays
Dynamic arrays are a powerful data structure in mvBASIC, since they can be used to represent the contents of a file item. A dynamic array is simply a string variable with attribute marks, value marks, and subvalue marks taken to be field delimiters.
When a file item is read into a string variable by a READ or READU statement, the fields are separated by attribute marks (CTRL+^, or CHAR(254)), and subfields are generally separated by value marks and subvalue marks (CTRL+] and CTRL+\ , or CHAR(253) and CHAR(252)). The string variable is thus in the form of a dynamic array and can be manipulated by the dynamic array functions.
	NOTE
	When these delimiters are sent to the screen via a PRINT or CRT statement, they will not appear as expected: mvBASIC will subtract 127 from the ASCII value of a high-order character on output. Thus CHAR(254) will appear on output as ~, CHAR(253) will appear as }, and CHAR(252) will appear as |.

See Reading and Updating File Items later in this section for more information on reading file items into an mvBASIC program.
[bookmark: _Toc449702025]Dynamic Array Functions
To examine or alter the contents of a particular attribute, value, or subvalue of a dynamic array, mvBASIC provides the EXTRACT, REPLACE, INSERT, and DELETE functions.
The EXTRACT function returns the contents of the particular attribute, value, or subvalue. For example, if Attribute 6 of the dynamic array CUST contains the customer’s zip code, a variable ZIP can be assigned with:
	ZIP = EXTRACT(CUST,6)

The REPLACE function replaces the contents with new data. For example, if a customer had a new zip code NEW.ZIP, it can replace the old zip code in Attribute 6 of the array CUST with:
	CUST = REPLACE(CUST, 6 ; NEW.ZIP)

The INSERT function inserts data as an attribute, value, or subvalue in the given position. For example, if Attribute 6 of CUST does not exist, it can be assigned to the customer’s zip code ZIP with:
	CUST = INSERT(CUST , 6 ; ZIP)

The difference between REPLACE and INSERT is that REPLACE will overwrite any data already in the given position, but INSERT will simply move it up. If Attribute 6 had already existed in the previous example, the new data will become Attribute 6, the old Attribute 6 will become Attribute 7, and so on.
The DELETE function deletes the specified attribute, value, or subvalue. For example, Attribute 7 of CUST can be deleted with:
	CUST = DELETE(CUST , 7)

The DELETE function does not perform the same function as using REPLACE with the null string. By deleting Attribute 7, Attribute 8 becomes Attribute 7, and so on. By replacing Attribute 7 with the null string, Attribute 7 becomes null and all other attributes remain unchanged.
[bookmark: _Toc449702026]The LOCATE Statement
In addition to the four functions discussed in the preceding section, the LOCATE statement proves to be extremely powerful in manipulating dynamic arrays. The LOCATE statement searches for a particular attribute, value, or subvalue within a dynamic array string (or subset thereof). If the data has been sorted into an ascending or descending order, the order can be specified in the LOCATE statement. THEN and ELSE clauses are accepted by LOCATE to specify action if the string is or is not found.
If the string is found, the LOCATE statement sets a specified variable to the position where the data was found, and the statements of the THEN clause, if included, are executed. If the string is not found where expected, the variable is set to the current position plus one, and the statements in the ELSE clause are executed. In the ELSE clause, the variable can be used with an INSERT function to place the data in the proper position.
For example, if a dynamic array LIST contains names in alphabetical order separated by attribute marks, a new name NAME can be inserted with:
	LOCATE(NAME, LIST; POSITION; "A") THEN
PRINT NAME : " ALREADY LISTED."
END ELSE
NAMELIST = INSERT(LIST , POSITION; NAME)
END

[bookmark: _Toc449702027]Alternate Forms for Dynamic Array Processors
An enhancement of mvBASIC is an alternate form for each of the dynamic array processing functions. This form uses angle brackets in referencing a dynamic array field, thus simulating the syntax for referencing dimensioned arrays. Since the angle brackets tend to be more intuitive, they are generally preferred over the older syntax forms.
The preceding example lines might have read:
	Old
	New

	ZIP = EXTRACT(CUST,6)
	ZIP = CUST<6>

	CUST = REPLACE(CUST, 6 ; NEW.ZIP)
	CUST<6> = ZIP

	CUST = INSERT(CUST , 6 ; ZIP)
	INS ZIP BEFORE CUST<6>

	CUST = DELETE(CUST , 7)
	DEL CUST<7>

	LOCATE(NAME, LIST; POSITION; "AL")...
	LOCATE NAME IN LIST BY "AL"...

[bookmark: _Toc449702028]Counting Delimiters and Substrings
The COUNT function returns the number of times a specified substring appears in a string. The function returns zero if the substring is not found. If the substring is the null string, the function returns the number of characters in the string minus one.
The DCOUNT function returns the number of fields separated by a given delimiter. DCOUNT can be very useful for processing dynamic arrays as well as other strings. For example, the number of attributes in a string ADDRESSES can be determined with:
	NO.OF.ATTRS = DCOUNT(ADDRESSES, CHAR(254))

[bookmark: _Toc449702029]Generalized String Processing
EXTRACT, REPLACE, INSERT, and DELETE are very powerful for referencing and adapting dynamic arrays in mvBASIC. However, they are dependent on the standard delimiters being used within the array. If given a string with different delimiters between its fields, the programmer is forced to use the more generalized string processing functions.
[bookmark: _Toc449702030]Substring Assignment
A substring is specified by a starting character position and a substring length, separated by commas and enclosed in square brackets. The general syntax for a portion of a string is:
Format
	string-expression [n,m]

Parameter(s)
	n
	Starting column position.

	m
	Length of the substring.

Description
Using this syntax, substrings can be extracted and replaced like the fields of a dynamic array or the elements of a dimensioned array.
Example
If the string NAME contains "SHAW, GEORGE BERNARD", the variable FIRSTNAME can be assigned "GEORGE" with:
	FIRSTNAME = NAME [7,6]

By using column positions, therefore, the EXTRACT function can be simulated for string variables. To simulate the REPLACE, INSERT, and DELETE functions, portions of a string can be assigned values directly. To substitute the string "RALPH" for "GEORGE", for example, the code might read:
	NAME[7,6] = “RALPH”

The only thing which is not obvious in manipulating substrings is how to determine the column position and length of the substring. For this purpose, the FIELD, COL1, COL2, LEN, and INDEX functions are crucial to string processing.
[bookmark: _Toc449702031]The FIELD Function
The FIELD function accepts any character as a delimiter and returns the specified field, thus acting as a generalized EXTRACT. For example, if the string NAME contains "SHAW, GEORGE BERNARD", then the last name "SHAW" can be placed in the variable SURNAME with:
	SURNAME = FIELD(NAME , "," , 1)

[bookmark: _Toc449702032]The COL1, COL2, and LEN Functions
The COL1 and COL2 functions, respectively, return the column positions immediately before and immediately after the last FIELD function. The LEN function returns the number of characters in a string.
For example, if the string NAME contained "SHAW, GEORGE BERNARD", the first name "GEORGE" could be deleted with:
	FIRSTNAME = FIELD(NAME, " " , 2)
NAME [COL1(), COL2()] = " "

The string NAME now contains "SHAW, BERNARD".
[bookmark: _Toc449702033]The INDEX Function
The INDEX function returns the column at which a particular substring can be found in a string. This value can be used in a substring assignment statement to replace or delete the substring.
[bookmark: _Toc449702034]Trimming Spaces
The TRIM, TRIMB, and TRIMF functions each serve to remove all extra spaces from a string. The TRIM function trims all multiple spaces and all spaces at the beginning and at the end of a string. The TRIMB function trims only spaces at the end of a string, and the TRIMF function trims only spaces at the beginning of a string.
[bookmark: _Toc449702035]Converting Characters
The CONVERT statement can be used to convert every occurrence of a particular character in a string into a different character. The CONVERT statement is particularly useful for converting strings with nonstandard delimiters such as spaces, commas, or colons into dynamic array format. For example, if the string NAME contained "SHAW, GEORGE BERNARD", this name could be incorporated into a file that had the last name and first name separated by attribute marks with:
	CONVERT "," TO CHAR(254) IN NAME

[bookmark: _Toc449702036]Dimensioned Arrays
A dimensioned array is a one- or two-dimensioned structure for data. Elements of the array can be thought of as cells rather then fields.
The most significant difference between dimensioned and dynamic arrays is that the size of a dimensioned array must be assigned at compilation, whereas the size of a dynamic array can vary at run-time according to need. Dimensioned arrays require more storage allocation and are somewhat less flexible; they are, however, more efficient at run-time. Each element in a dimensioned array has a direct pointer; each field in a dynamic array, on the other hand, requires the entire string to be searched through from the start.
For example, suppose a dynamic array contains a thousand attributes. Attribute 999 actually refers to the data between the 998th and 999th attribute marks; therefore, to access attribute 999, the processor has to search through the string until 999 attribute marks are found. If several fields towards the end of the string need to be accessed this way, the run-time of the program can be drastically affected.
If a vector (a 1-dimensional array) were used instead of a dynamic array, however, the processor has to access only a single direct pointer to element number 999 in order to retrieve the data. Dimensioned arrays, therefore, provide a shortcut to the field.
See Format, Data and Expressions for a more complete description of the structure of dimensioned arrays.
[bookmark: _Toc449702037]Assigning Dimensioned Array Variables (DIM)
Before a dimensioned array can be used, it needs to be declared with its dimensions. The DIMENSION statement declares a dimensioned array. Since the DIMENSION statement is interpreted by the compiler, neither variables nor expressions can be used in a DIMENSION statement.
If the array is to be allocated space in the COMMON area, the COMMON statement can also be used to declare a dimensioned array. Arrays that have been declared with the COMMON statement, however, should not be declared again with a DIMENSION statement.
[bookmark: _Toc449702038]Converting Strings to Dimensioned Arrays
The statements MATPARSE and MATBUILD were designed for placing the elements of a string into a dimensioned array with MATPARSE and later reading them back into a string with MATBUILD.
MATPARSE and MATBUILD are flexible enough to be applicable to several string formats. Their behavior, therefore, is dependent on the number of delimiters specified in the syntax. In the most common case, if the string is a dynamic array, each attribute can be placed into a separate element of the array by specifying an attribute mark as the single delimiter. For example, if STRING were a dynamic array, the attributes of STRING could be read as elements of dimensioned array ARRAY with:
	MATPARSE STRING FROM ARRAY, CHAR(254)

The attribute marks will not appear in any of the elements of the new array. The MATPARSE statement in this example might be thought of as a shortcut for:
	FOR I = 1 TO MAXELTS
ARRAY(I) = STRING<I>
NEXT I

with MAXELTS representing the dimensions of the array.
Once the string is read into the array, its elements can be freely read and updated. To write the dimensioned array back into the string, MATBUILD can be used with the same delimiter:
	MATBUILD ARRAY FROM STRING, CHAR(254)

Each element of the array will be placed into the string, separated by attribute marks.
MATPARSE and MATBUILD are meant to be used together. The same delimiters used for MATPARSE should be used with MATBUILD to reconstruct the string at the end of processing.
[bookmark: _Toc449702039]MATREAD and MATWRITE
The MATREAD and MATWRITE statements allow file items to be read from and written directly into dimensioned arrays. MATREAD is equivalent to performing a READ statement and then using MATPARSE with an attribute mark as the delimiter. MATWRITE is equivalent to using MATBUILD with an attribute mark as the delimiter and then performing a WRITE. See Reading and Updating File Items later in this section for more information on reading and writing file items.
[bookmark: _Toc449702040]The MAT Statement
The MAT statement assigns all elements of a dimensioned array to a single value or to the values of another array. For example, to assign all elements of an array ARRAY to 6, the code might read:
	MAT ARRAY = 6

This use of the MAT statement is a shorthand for:
	FOR I = 1 TO MAXELTS
ARRAY(I) = 6
NEXT I

With MAXELTS representing the maximum dimensions of the array.
To assign the elements of ARRAY to the elements of ARRAY2, the code might read:
	MAT ARRAY = MAT ARRAY2

which is a shorthand for:
	FOR I = 1 TO MAXELTS
ARRAY(I) = ARRAY2(I)
NEXT I

[bookmark: _Toc449702041]Reading and Updating File Items
Before an item in a file can be accessed, it must be assigned a symbolic name, called a file variable. The file variable is necessary to provide a pointer to the file that will be used by the program each time the file is accessed.
[bookmark: _Toc449702042]File Variables (OPEN)
The OPEN statement assigns a file variable to a file, so that the program can read, write, select, or delete items in the file. All subsequent access of the file must reference the file variable and not the file name itself.
If a file is opened without a file variable specified, it uses the default file variable. Any subsequent file access statements that do not specify a file variable will use the default file variable. Only one file can be assigned to the default file variable at a single time.
[bookmark: _Toc449702043]Reading and Writing a File Item (READ, WRITE, etc.)
Once the file is opened, any item can be directly accessed. The READ statement assigns the string value of a file item to a dynamic array variable. The fields of the array can then be accessed by the dynamic array processing functions EXTRACT, REPLACE, INSERT, and DELETE. The WRITE statement writes a new or updated dynamic array string into a file item. There are several variations to READ and WRITE provided by mvBASIC. The READV and WRITEV statements read and write only a single attribute of an item, as a shortcut for programs which are concerned only with a single attribute. In addition, the MATREAD and MATWRITE statements read and write items as dimensioned arrays, with each attribute corresponding to an element of the array.
The file-reading statements are each equipped with THEN and ELSE clauses. If the item cannot be found, the v statements are executed. If it can be found, the THEN statements are executed. See Internal Program Control for more information on the syntax of THEN and ELSE clauses.
[bookmark: _Toc449702044]File Item Locks (READU, WRITEU, RELEASE, etc.)
Each of the statements for reading a file item have corresponding statements that place a lock on the file item as it is read. These statements are the READU, READVU, and MATREADU statements. (The U suffix stands for Update, declaring that the file item might be changed and rewritten.) The item lock is lifted either when the item is released with a RELEASE statement, deleted with a DELETE statement, written with a WRITE, WRITEV, or MATWRITE statement, or when the program is terminated. Until the lock is lifted, no other users will be able to access the same file item with a READU, READVU, or MATREADU statement.
File item locks only affect other READU, READVU, and MATREADU statements. While an item is locked, programs can access the file item with a normal READ, READV, or MATREAD statement, or they can even write it with any of the file writing statements. The success of a file item lock depends on its being respected by all other programs that access the same file.
If an item is to be written but the programmer does not want the lock removed, the WRITEU, WRITEVU, and MATWRITEU statements should be used in place of WRITE, WRITEV or MATWRITE. These statements will write the file item but retain the item lock for subsequent update. (Again, the U suffix stands for Update, declaring that further update might occur.)
[bookmark: _Toc449702045]The LOCKED Clause
The item-locking statements READU, READVU, and MATREADU are each equipped with an optional LOCKED clause. Normally, when a program attempts to read and lock an item which is already locked, the program waits for the item to be released before continuing with execution. However, if the LOCKED clause is included, the program simply executes the LOCKED statements and continues with execution immediately. The LOCKED statements follow the syntax of THEN and ELSE clauses in mvBASIC.
The LOCKED clause helps to avoid the situation called a deadly embrace. A deadly embrace happens when two users both lock items, and before releasing their locks, each user then tries to read and lock the other item. Without the LOCKED clause, both users will be indefinitely stuck since neither is free to unlock its item. If the LOCKED clause is used, however, the deadly embrace cannot occur.
[bookmark: _Toc449702046]Select-lists (SELECT, READNEXT)
Select-list variables can be created through the mvBASIC SELECT statement, or by using the EXECUTE statement to call one of the INFO/ACCESS select-list generators. The SELECT statement does not accept the selection expressions accepted by the INFO/ACCESS commands; however, the SELECT statement does allow a select-list to be created from the attributes of a dynamic array string. See External Program Control for more information on using EXECUTE for generating select-lists.
A select-list can also be created external to the program by executing one of the INFO/ACCESS select-list generators and then immediately running the program. If the program is designed this way, the SYSTEM(11) function is recommended to test if there is an external select-list.
Once the select-list is created, it can be read with the READNEXT statement. READNEXT reads the next item- ID in the select-list. After selecting a file, the READNEXT statement is generally used in a loop to perform a procedure on all selected items.
[bookmark: _Toc449702047]Deleting File Items (DELETE, CLEARFILE)
The DELETE statement is a statement that deletes a specific file item from an opened file. It should not be confused with the DELETE function or the DEL statement, which both delete a field from a dynamic array.
The CLEARFILE statement deletes all items in the data file.

	

[bookmark: _Toc449702048]Reading and Writing Tapes or Floppy Disks
mvBASIC includes several statements for tape and floppy disk processing. For the purpose of this discussion a floppy disk functions as a tape and therefore, is included in any reference to a tape. For reading and writing strings on tape, there are the READT and WRITET statements. As expected, the READT statement reads the next record off the attached tape device, and the WRITET statement writes a record onto the tape. The READTX statement is designed for tapes which might contain segment marks. The READTX statement is identical to the READT statement, except that the data from the tape is translated into ASCII hexadecimal format before it is assigned to the string. The ICONV function can then be used to translate the string back into readable format. READTX is designed for reading segment marks (CHAR(255)) from a tape.
In addition, there are statements to simulate the T-WEOF and T-REW commands. The WEOF statement writes an End-Of-File mark at the current position of the tape, and the REWIND statement rewinds the tape to the beginning.
Each of the tape I/O statements includes THEN and ELSE clauses to specify action according to whether the tape statement was successful. The ELS clause is often used to produce a meaningful error message by calling the SYSTEM(0) function. The SYSTEM(0) function returns a number from 0 to 4, reflecting whether the latest tape I/O statement worked, and if it didn’t, what the problem was. See Statement and Function Reference for more information.

[bookmark: _Toc449702049]Communications
mvBASIC includes several statements designed for communication programs on the mvBase system. Data can be sent to or taken from any remote line.
[bookmark: _Toc449702050]Unlinking and Attaching a Line
Before a program can communicate with a remote line, the line should first be attached with the LINE-ATT command. The LINE-ATT command can be executed only if the line is not already linked to another process. To unlink a line from a process, use the UNLINK-LINE command.
[bookmark: _Toc449702051]Sending Data to a Line (SEND, SENDX, SENDBREAK)
The SEND statement sends data to a remote line. SEND does not require that the remote line be attached, but it does require that the line not be linked to another process. The syntax of the SEND statement is based on that of the PRINT, CRT, and DISPLAY statements, in that it accepts commas for tabulation, @-functions for screen formatting, and even trailing colons for carriage return and linefeed suppression.
A variation of the SEND statement is the SENDX statement, which sends data written in ASCII hexadecimal format to the remote line, translating it into standard ASCII characters. The SENDX statement was designed for sending a segment mark (CHAR(255)), which is normally taken as the end-of-data character. If the SENDX statement is used, a segment mark can be converted to hexadecimal (FF) and thus be successfully transmitted. To convert data into ASCII hexadecimal, use the OCONV function with the MX conversion code.
[bookmark: _Toc449702052]Sending a BREAK
The SENDBREAK statement sends a break signal to the designated remote line. It might be used, for example, for hanging up modems that recognize a break as a hanging signal.
[bookmark: _Toc449702053]Receiving Data from a Line
There are several ways of receiving data from an attached line in mvBASIC. The INPUT and INPUTIF statements include FROM clauses, which can be used to specify a remote line from which the input should be taken. In addition, the GET and GETX statements are designed specifically for taking characters from a remote line.
[bookmark: _Toc449702054]The Type-ahead Buffer
The behaviour of input statements often depends on the status of the type-ahead feature. The type-ahead feature is generally enabled on mvBase. When type-ahead is enabled, characters are accepted from a line even when there is no prompt for input. These characters are placed in the type-ahead buffer. The type-ahead buffer accepts up to 127 characters on input. The LIST-LINE-CHARS command displays, among other things, whether the type-ahead feature is currently on for each process, and how many characters are currently in the type-ahead buffer for that line.
If type-ahead is enabled, the characters in the type-ahead buffer are taken as responses to the next input request. Thus an operator who is familiar with a program can type responses to prompts before they are printed, without having to wait for the program to catch up.
The type-ahead feature is turned on by the TA-ON command and turned off with TA-OFF. A user logged on to the SYSPROG account can turn type-ahead on or off for any process, defaulting to the current process. In addition, the TA-ON and TA-OFF statements in mvBASIC can be used to toggle the type-ahead feature for the current process or for all attached processes. A programmer might wish to turn type-ahead off during execution if there is danger of a user making mistakes by responding too quickly. If a programmer chooses to turn off the type-ahead feature in a program, however, it should be turned on again before the program is terminated.
An alternative to turning type-ahead off is to clear the type-ahead buffer periodically. The type-ahead buffer can be cleared in mvBASIC with the TA-CLEAR or INPUTCLEAR statement. However, only the type-ahead buffer for the current line is cleared. To clear the type-ahead buffer for another line, the SYSPROG command PROTOCOL with the C option should be used.
To determine the number of characters currently in the type-ahead buffer for the current process, or for any other process, use the TA function.
See the TCL Reference Guide for more information on the type-ahead feature.
[bookmark: _Toc449702055]Input from an Attached Line (GET, GETX)
In general there are two ways to accept input from a remote attached line: through the FROM clauses of the INPUT and INPUTIF statements, or through the GET or GETX statement.
The GET statement is an all-purpose statement for taking input from an attached line. The GET statement will accept any character from the attached line, with the exception of segment marks (CHAR(255)), which are interpreted as the end of data. The GET statement includes many optional clauses, which determine the conditions at which the input is terminated, and whether the program should wait for input or just check the type-ahead buffer.
Among the conditions for termination supported by the GET statement are:
· Terminate input when a certain character is read.
· Wait only a specified number of seconds before timing out.
· Accept only a specified number of characters.
· Accept input only from the type-ahead buffer.
In addition to GET, mvBASIC supports a GETX statement, which is identical to GET except that the input characters from the remote line are translated into ASCII hexadecimal format before they are taken. The characters can then be converted back into normal ASCII characters with the ICONV function and the MX conversion code. The GETX statement was designed to accept segment marks from the remote line, which are normally interpreted as the end of data.

[bookmark: _Toc449702056]Execution Locks
The LOCK statement sets an execution lock which establishes exclusive use by one process until the lock is removed. mvBase provides a set of 256 execution locks. These locks can be accessed only through mvBASIC. Execution locks should not be confused with file item locks, since they use a very different mechanism.
Execution locks are set with the LOCK statement by specifying a lock number. That lock number is determined only by local convention. mvBase establishes 256 slots (0 through 255), and keeps track of whether the slot is taken or not. It is up to the application programs to take advantage of this structure.
For example, suppose a particular subroutine tends to slow down the system each time it is used. If a LOCK statement is used at the beginning of the subroutine, then only one user will be able to execute the subroutine at any given time. The lock number should be unique.
Execution locks are released at the termination of the program, or at the encounter of an UNLOCK statement. The UNLOCK statement can be used to release a specific lock number or to release all locks set by the current program.
[bookmark: _Toc449702057]The THEN and ELSE Clauses to LOCK
LOCK is supplied with optional THEN and ELSE clauses that have the same effect as the LOCKED clause for READU. Normally, when a LOCK statement is used on a lock number which is already locked, the program will wait for the lock to be lifted before continuing with execution. However, if the THEN or ELSE clause is included, the program will simply execute the ELSE clause, if present, and continue with execution immediately.
The THEN and ELSE clauses help to avoid the situation called a deadly embrace. A deadly embrace happens when, for instance, one user sets execution lock 1, and another user sets execution lock 2. The first user then attempts to access the procedure controlled by lock 2, and the second user attempts to access the procedure controlled by lock 1. Each user is now stuck, since the program will wait indefinitely for the lock to be released, and neither is free to release the lock that has already been set by their process. If the THEN or ELSE clause is used, however, the deadly embrace cannot occur.
For a list of all execution locks, use the WHAT command.

[bookmark: _Toc449702058]Compiler Directives
There are four compiler directive statements. Each of these statements begins with a dollar sign ($).
[bookmark: _Toc449702059]Comments in the Object Code
The $* statement places a comment directly in the object code of a program when it is compiled. It is most useful for entering version numbers or copyright information before software is distributed.
[bookmark: _Toc449702060]Reading External Source Code ($CHAIN, $INCLUDE, $INSERT)
Three statements tell the compiler to read source code from another file item: $INCLUDE, $INSERT, and $CHAIN.
$INCLUDE and $INSERT are identical statements. Either statement results in the program being compiled as if the external source code were written at the point where the $INCLUDE or $INSERT statement had been entered. Compilation will then continue at the line after the $INCLUDE or $INSERT statement. $INCLUDE and $INSERT are also useful for any code that might be used by several different programs. An example of such code might be a file item containing COMMON statements.
The $CHAIN statement is different from $INCLUDE and $INSERT in that the compilation will not return to the original program. The $CHAIN statement is not intended for code which might be shared by several programs, but for programs which may have source code longer than 32K bytes. The $CHAIN statement allows several different file items containing source code to be CHAINed together.
The only restriction to $INCLUDE, $INSERT, and $CHAIN is that the number of bytes in the resulting object code cannot exceed 248K.

[bookmark: _Toc449702061]Miscellaneous Statements and Functions
The INPUT CTRL statement allows the programmer to toggle the acceptance of control characters in terminal input.
The SLEEP and RQM statements suspend program execution for a number of seconds, or until a specified time of day.
The ECHO statement toggles the echo feature for the attached process.
The REM, *, and ! statements allow comment lines to be placed in the source code. This statement allows the programmer to document code and make it more accessible to future modification.
The PROCREAD and PROCWRITE statements allow the program to read to and write from the primary input buffer of the calling Proc.
The LINESTATUS function returns information on the DTR and RTS signals on a specified line. This information is important for communication programs that need to know if a device (such as a modem) is properly connected.
The USER_DEFINED function allows the programmer to create mvBASIC functions that may be used in any expression in the mvBASIC program. This function accepts any number of input expressions and always returns a single value.
[bookmark: _Toc449702062]Conversion Codes (ICONV, OCONV)
The ICONV function translates a string from external to internal format, according to the INFO/ACCESS conversion codes. The conversion codes supported are those for dates, time, hexadecimal, and table translation. The OCONV function translates back from internal to external format. See INFO/ACCESS for more information on conversion codes.
[bookmark: _Toc449702063]The SENTENCE () Function
The SENTENCE() function returns the TCL or Proc statement used to invoke the mvBASIC program that contains the function.
[bookmark: _Toc449702064]The SYSTEM Function
The SYSTEM function returns significant information about the system. Some information made available by SYSTEM follows:
· The command-line options used to the RUN command.
· The error code for a failed tape or floppy disk I/O statement, or the tape or floppy disk record length.
· Whether the program was called by a Proc, whether the external select-list variable has been set, whether the data stack is empty, or whether the program is cataloged.
· Whether output is being sent to the printer, the number of lines left on the current page, the current page number, and current open Spooler files.
· The operator’s terminal type, or the number of lines or columns on the operator’s terminal.
· The user’s account number, process number, or line number.
· The system identification number.
[bookmark: _Toc449702065]Entering the Debugger
If the BREAK key is pressed during program execution, the user will be placed in the mvBASIC Debugger. This feature can be disabled and reinstated with the BREAK statement. The BREAK statement does not simply toggle the break feature, it also increments and decrements the Break Inhibit Counter.
Alternative ways of entering the Debugger are to use the D option to the RUN command or to place a DEBUG statement directly in the source code.
See Using the mvBASIC Debugger for a full description of Debugger commands and how they are used.

[bookmark: _Toc449702066]The Error Message Processor
mvBase permits powerful formatting control when printing error messages. The following are examples:
You may create an error message and display that message on the screen at a specified location. This is done by using @(row,column) and @(column) cursor addressing directives, and @(-n) screen functions. The parameters used to specify the location of the message may have the following formats:
Parameter(s)
	n
	Where n is a literal numeric value. (of the error message)

	A
	Where A is the next error message parameter value.

	A+n
	Where the numeric value n is added to the next error message parameter value A.

	A-n
	Where the numeric value n is subtracted from the next error message parameter value A.

	A*n
	Where the next error message parameter value A is multiplied by the numeric value n.

	A/n
	Where the next error message parameter value A is divided by the numeric value n.

Parameters 5 and 7 are passed to the error message ERROR1A:
	ID:
	ERROR1A
	

	001
	@(A,A)
	Outputs at position (5,7)

	002
	H** x=5 y=7 **
	Outputs ** x=5 y=7 **

	003
	S1
	Resets pointer to parameter #1

	004
	@(A+3,A)
	Outputs at position (8,7)

	005
	H** x=8 y=7 **
	Outputs ** x=8 y=7 **

	006
	S1
	Resets pointer to parameter #1

	007
	@(A,A-3)
	Outputs at position (5,4)

	008
	H** x=5 y=4 **
	Outputs ** x=5 y=4 **

	009
	S1
	Resets pointer to parameter #1

	010
	@(A*3,A/1)
	Outputs at position (15,7)

	011
	H** x=15 y=7 **
	Outputs ** x=15 y=7 **

The parameters that can be passed to the error message (using mvBASIC STOP, ABORT or PRINTERR statements) may be accessed in any sequence and may be reused if necessary. The advantages of this are:
· The user has control over the order in which the parameters will be displayed in the final error message. Previously, the parameters were displayed only in the order in which they were passed to the error message.
· Parameters can be reused. This allows the use of windowing capabilities. For example, suppose parameters X and Y are passed to the error message. These parameters would be used as base coordinates (X,Y). You could then use @(row,column) to reference all other desired cursor positions.
Parameters 12 and 17 are passed to the error message, ERROR1:
	ID:
	ERROR1
	

	001
	@(A,A)
	Outputs at position (12,17)

	002
	H** x=12 y=17 **
	Outputs ** x=12 y=17 **

	003
	S1
	Resets pointer to parameter #1

	004
	@(A+3,A)
	Outputs at position (15,17)

	005
	H** x=15 y=17 **
	Outputs ** x=15 y=17 **

The enhanced S command used in the ERROR1 example is now able to use numeric literal parameters without parenthesis (). For example, instead of using S(1), S1 may be used. is a numeric literal. In the previous example, the internal pointer is reset to parameter #1. Use the format:
	S{nnn / (nnn)}

Suppose the three parameters X, Y and Z are passed to the following error message, ERROR2:
	ID:
	ERROR2
	

	001
	E
	Outputs ID:ERROR2

	002
	A(2)
	Outputs X

	003
	A(2)
	Outputs Y

	004
	A(2)
	Outputs Z

	005
	S2
	Resets pointer to parameter #2

	006
	A(2)
	Outputs Y

	007
	A(2)
	Outputs Z

The following message will be displayed: ERROR2, X, Y, Z followed by Y, then Z.
Suppose parameters 10 and 15 are passed to the following error message, ERROR3:
	ID:
	ERROR3
	

	001
	@(A,A)
	Outputs at position (10,15)

	002
	H**********
	Outputs **********

	003
	S1
	Resets pointer to parameter #1

	004
	@(A+1,A)
	Outputs at position (11,15)

	005
	H* WINDOW *
	Outputs * WINDOW *

	006
	S1
	Resets pointer to parameter #1

	007
	@(A+2,A)
	Outputs at position (12,15)

	008
	H**********
	Outputs **********

The following message will be displayed at the base coordinate @(10,15):

* WINDOW *

	NOTE
	 After parameters are referenced (using the A, R and X commands), the internal pointer advances to the next available parameter. For example, in ERROR2 the A command references parameter X and the internal pointer advances to the next parameter Y. The error message ID is interpreted as parameter 0 (as with PROC). Therefore, specifying S0 within your error message will allow the ID to be used and reused by the next parameter referenced.

You may use ASCII codes in error messages. The Error Message Processor will translate the code from a decimal number to its ASCII equivalent. Functions previously impossible to perform from within an error message can be performed. For example, a peripheral escape sequence can be easily added to an error message as show below.
Format
	C(code)

Parameter(s)
	code
	Decimal ASCII character that the Error Message Processor will translate.

Example
	C(27)

The example above outputs the ASCII <ESCAPE> character.
Any command line in the error message beginning with a question mark (?) will require a keystroke from the terminal before allowing the program to continue. This ensures that the user has a chance to see the error message before it is cleared from view by the next output screen.
Any line beginning with an exclamation mark (!) will be interpreted as a comment and will be ignored by the Error Message Processor. This feature allows you to add documentation to your error messages.

[bookmark: _Toc449702067]Statement and Function Reference
This is the reference section for mvBASIC statements and functions. Each statement or function has its own topic, and each topic contains a description of its purpose, an explanation of its syntax, and at least one example of its use.
Readers who are unfamiliar with mvBASIC should read Format, Data, and Expressions and Overview of mvBASIC Statements and Functions before referring to this section.
The following statements and functions are presented:
	$* Statement
$CHAIN Statement
$INCLUDE/$INSERT Statement
= Statement
[]= Statement
@ Function
ABORT Statement
ABS Function
ALPHA Function
ASCII Function
ASSIGNED/UNASSIGNED Function
ATTACH TAPE DEVICES/ CHANGE BLOCK-SIZE Statement
AUX ON/AUX OFF Statement
BLOCK/UNBLOCK Statement
BREAK Statement
CALL Statement
CASE Construct
CHAIN Statement
CHANGE Function
CHAR Function
CLEAR Statement
CLEARCOMMON Statement
CLEARDATA Statement
CLEARFILE Statement
CLEARSELECT Statement
COL1 Function
COL2 Function
COMMON Statement
COMPARE Statement
CONNECT/ DISCONNECT Statement
CONSOLE Statement
CONVERT Function
CONVERT Statement
COS Function
COUNT Function
CRT Statement
CRT ON Statement
DATA Statement
DATE Function
DCOUNT Function
DEBUG Statement
DEL Statement
DELETE Function
DELETE Statement
DETACH TAPE DEVICES Statement
DIMENSION Statement
DISCONNECT /CONNECT Statement
	DISPLAY Statement
DQUOTE Function
DTX Function
EBCDIC Function
ECHO Statement
END Statement
ENTER Statement
EQUATE Statement
EREPLACE Function
ERROR Statement
EXCHANGE Function
EXECUTE Statement
EXP Function
EXTRACT Function
FIELD Function
FMT Function
FOLD Function
FOOTING Statement
FOR...NEXT Construct
FUNCTION Statement
GET Statement
GETX Statement
GOSUB Statement
GOTO Statement
HEADING Statement
ICONV Function
IF Construct
IFR Statement
IN Statement
INDEX Function
INMAT Function
INPUT Statement
INPUT @ Statement
INPUTCLEAR Statement
INPUT CTRL Statement
INPUT Statement with the ELSE Clause
INPUTERR Statement
INPUTIF Statement
INPUTNULL Statement
INPUTPROMPT Statement
INPUTTRAP Statement
INS Statement
INSERT Function
INT Function
LEN Function
LINESTATUS Function
LN Function
	LOCATE Statement
LOCK Statement
LOCK-BEEP Statement
LOOP Construct
MAT Statement
MATBUILD Statement
MATPARSE Statement
MATREAD Statement
MATREADU Statement
MATWRITE Statement
MATWRITEU Statement
MAXIMUM Function
MINIMUM Function
MOD Function
NOT Function
NULL Statement
NUM Function
OCONV Function
ON ERROR Clause
OPEN Statement
PAGE Statement
PRECISION Statement
PRINT Statement
PRINTER Statement
PRINTERR Statement
PROCREAD Statement
PROCWRITE Statement
PROMPT Statement
PWR Function
READ Statement
READB Statement
READF Statement
READNEXT Statement
READT Statement
READTX Statement
READU Statement
READV Statement
READVU Statement
RELEASE Statement
REM Function
REM Statement
REMOVE Statement
REPLACE Function
RETURN Statement
RETURNING Clause
REWIND Statement
RND Function
RQM Statement
	SELECT Statement
SEND Statement
SENDBREAK Statement
SENDX Statement
SENTENCE Function
SEQ Function
SIN Function
SLEEP Statement
SORT Function
SOUNDEX Function
SPACE Function
SPOOLQ Statement
SQRT Function
SQUOTE Function
STATUS Function
STOP Statement
STR Function
SUBROUTINE Statement
SUM Function
SUMMATION Function
SWAP Function
SYSTEM Function
TA Function
TA Statement
TAN Function
TIME Function
TIMEDATE Function
TIMEOUT Statement
TRIM Function
TRIMB Function
TRIMF Function
UNASSIGNED/ASSIGNED Function
UNBLOCK/BLOCK Statement
UNLOCK Statement
WAKEUP Statement
WEOF Statement
WRITE Statement
WRITEB Statement
WRITEBU Statement
WRITEF Statement
WRITEFU Statement
WRITET Statement
WRITEU Statement
WRITEV Statement
WRITEVU Statement
XTD Function

Tokens Supported For System Delimiters
mvBase supports run-time efficient tokens called @AM, @FM, @VM and @SM for the attribute delimiter, the field delimiter, the value delimiter, and the sub-value delimiter, respectively.
	Token Name
	Delimiter
	Value

	@AM
	Attribute mark
	CHAR(254)

	@FM
	Field mark
	CHAR(254)

	@VM
	Value mark
	CHAR(253)

	@SM
	Subvalue mark
	CHAR(252)

These new tokens may be used anywhere CHAR() may be used, including EQUATE statements.

[bookmark: _Toc449702068]$* Statement
The $* statement allows a comment to be embedded directly into the program’s object code at compilation.
Format
	$* " text "
$* ' text '
$* \ text \

Parameter(s)
	text
	The comment text, enclosed within string delimiters.

Description
The $* statement directs the compiler to write the quoted text directly into the object code of the program. These comments are generally used to place copyright information or version numbers into source code before it is distributed.
Examples
To place the string "HELLO" directly into the object code of a program, the code might read:
	$* "HELLO"

In the next application, the $* statement is used to place a copyright into an adventure game:
	$* " DRAGONS -- Version 1.1 "
$* " Copyright 1989 N. West, NBM Inc. "
EQUATE TRUE TO 1, FALSE TO 0,
 BEL TO CHAR(7)
.
.
.

[bookmark: _Toc449702069]$CHAIN Statement
The $CHAIN statement allows source code to be read in from an external file item.
Format
	$CHAIN[filename] item-ID

Parameter(s)
	filename
	Name of the file containing the item. If filename is omitted, the current file is assumed.

	item-ID
	item-ID of the item containing the source code

Description
The $CHAIN statement directs the compiler to read source code from the specified file item and compile it as if it were written directly in the current program. The $CHAIN statement differs from the $INCLUDE and $INSERT statements in that the compiler does not return to the main program after compiling the source code in the specified file item; any statements appearing after the $CHAIN statement are ignored.
PC/OS versions prior to Mentor PRO 4.0 limited the size of items to 32K. Therefore, the $CHAIN statement was designed for programs with source code larger than 32K. By using $CHAIN statements, very long source code may be broken up into several file items and $CHAINed together, as long as the object code does not exceed 248K.
Example
To transfer compilation to source code in item PROG2 in file BP, the code might read:
	$CHAIN BP PROG2

In the next example, a very long program is broken up into 3 different source file items, each one but the last ending with a $CHAIN statement that calls the next.
The source file item CUST.ENTRY:
	EQUATE TRUE TO 1, FALSE TO 0,
 AM TO CHAR (254), VM TO CHAR (253),
 .
 .
 .
PRINT "PRINT REPORTS?"
$CHAIN CUST.ENTRY2
At the end of CUST.ENTRY, source file item CUST.ENTRY2 is called with a $CHAIN statement. CUST.ENTRY2 contains:
INPUT ANSWER
 .
 .
 .
FOUND = FALSE
FOR I = 1 TO NO.OF.ELTS UNTIL FOUND
 IF CUST.ARRAY (I) < 1, 3 > = NAME THEN
$CHAIN CUST.ENTRY3
CUST.ENTRY2, in turn, calls CUST.ENTRY3, which reads:
 FOUND = TRUE
 END
NEXT I
.
.
.

Note in the example that a FOR loop and an IF construct are broken over two file items.

[bookmark: _Toc449702070]$INCLUDE/$INSERT Statement
$INCLUDE and $INSERT statements allow source code to be read in from an external file item.
Format
	$INCLUDE[filename] item-ID
$INSERT[filename] item-ID

Parameter(s)
	filename
	Name of the file containing the item. If filename is omitted, the current file is assumed.

	item-ID
	item-ID of the item containing the source code.

Description
The $INCLUDE and $INSERT statements direct the compiler to read in source code from the specified file item and compile it as if it were written directly in the current program. The $INSERT statement is identical to the $INCLUDE statement.
The $INCLUDE statement differs from the $CHAIN statement in that the compiler returns to the main program and continues compiling with the statement following the $INCLUDE.
The $INCLUDE and $INSERT statements are particularly useful to read in file items containing COMMON and EQUATE statements, or any statements which a programmer might want to be consistent between several different programs. Be careful, however, of naming conflicts between file items.
$INCLUDE statements may be nested; that is, a program may $INCLUDE a file item which $INCLUDEs another file item, up to 40 levels. However, the total object code when compiled may not exceed 248K bytes.
If the source code read in through an $INCLUDE statement generates a run-time error message, the error message displays only the number of the line which contains the $INCLUDE statement. The line numbers from the external file item are not kept in the object code.
Examples
To read in the source code written in item SETUP in file BP, the code might read:
	$INCLUDE BP SETUP

In the next application, the $INCLUDE statement is used at the beginning of a program to read in common variables, equated variables, and the part of the program which opens the file.
	$INCLUDE STARTUP
PRINT "ENTER THE CUSTOMER ID : ":
INPUT ID
MATREAD PHONE.ARRAY FROM CUSTFILE, ID ELSE
 PRINT "CANNOT READ RECORD!"
 STOP
END
The file item STARTUP contains the text:
COMMON PHONE.ARRAY(10), PHONEREC
EQUATE TRUE TO 1, FALSE TO 0, AM TO CHAR(254)
PROMPT " "
OPEN "CUSTOMERS" TO CUSTFILE ELSE
 ABORT 201, "CUSTOMERS"
END

[bookmark: _Toc449702071]= Statement
The direct assignment statement assigns a value to a variable.
Format
	var = expr
var += expr
var -= expr
var *= expr
var /= expr
var := expr

Parameter(s)
	var
	Variable to be assigned.

	expr
	An expression evaluating to the value to be assigned to var.

Description
The direct assignment statement (=) assigns the value of expr to the variable var. In addition, there are several other forms of the assignment statement, of the form var op= expr, which is equivalent to var = var op expr.
	= expr
	var takes the current value of expr.

	+= expr
	var becomes var plus the current value of expr.

	-= expr
	var becomes var minus the current value of expr.

	*= expr
	var becomes var multiplied by the current value of expr.

	/= expr
	var becomes var divided by the current value of expr.

	:= expr
	var becomes var concatenated with the current value of expr.

Examples
If the SURNAME were to be appended to the variable NAME, the code might read:
	NAME : = SURNAME

In the next application, assignment statements are used to assign to the variable PROFIT the value of COST minus PRICE, and then to subtract from PROFIT the value of the overhead allotted to that sale. An external subroutine CALC.OVERHEAD assigns the value OVERHEAD based on the value of PROFIT.
	PRINT "ENTER COST OF ITEM: "
INPUT COST
PRINT "ENTER PRICE AT WHICH ITEM WAS SOLD: "
INPUT PRICE
PROFIT = COST - PRICE
CALL CALC.OVERHEAD (PROFIT,OVERHEAD)
PROFIT - = OVERHEAD
PRINT "WITH OVERHEAD TAKEN INTO ACCOUNT, THE
PROFIT IS:"
PRINT PROFIT

[bookmark: _Toc449702072][]= Statement
The substring assignment statement replaces a part of a string.
Format
	string [expr1,expr2] = expr3

Parameter(s)
	string
	String variable to be changed.

	expr1
	An expression evaluating to the starting character position.

	expr2
	An expression evaluating to the ending character position.

	expr3
	An expression evaluating to the replacement string.

Description
The substring assignment statement allows any part of a string to be reassigned to another value. The substring assignment statement may be used with the FIELD, COL(), and COL2() functions to provide the same performance as the REPLACE, INSERT, and DELETE dynamic array functions.
The behavior of the substring assignment is dependent on the values of expr1 and expr2. The rules are as follows:
	expr1 >= 0
	If expr1 is nonnegative, it is taken as the starting character position of the string from left to right. If expr1 evaluates to 0, the starting character position is 1. For example, if STRING is "HI THERE", then
	STRING [2,2] = " OW "

produces "HOWTHERE".
If expr1 evaluates to a number greater than the length of the string, then the replacement string is appended at the end.

	expr1 < 0
	If expr1 is negative, it is taken as the starting character position from right to left. For example, if STRING is "HI THERE", then
	STRING [-2,2] = " OW "

produces "HI THEOW". If the absolute value of expr1 is greater than the length of the string and expr1 is negative, it behaves as if expr1 were 0.

	expr2 >= 0
	If expr2 is nonnegative, it is taken as the length of the string to be replaced. Note that this length does not have to correspond with the length of the replacement string. If expr2 evaluates to zero, then the replacement string should be inserted without replacing any characters in the string. (If expr1 is negative, it is inserted to the left of that position; otherwise it is inserted to the right.)

	expr2 < 0
	If expr2 is negative, it is taken as the ending character position of the string portion to be replaced, counting from right to left. For example, if STRING is "HI THERE", then:
	STRING [2, -2] = "OW"

produces "HOWE". Similarly, STRING [-2, -2] = "OW " produces "HI THERWE".

If the positions specified by expr1 and expr2 overlap, characters are repeated in the resulting string. For example, if STRING is "HI THERE", then:
	STRING[7,-7] = "OW"

produces:
	"HI THEOW THERE"

With the statement:
	DIGITS[n , m] = "XX"

and the variable DIGITS containing "1234567890", the behavior of the substring assignment statement is summarized by this table:
	
	n > 0
	n = 0
	n < 0

	m > 0
	Starting at position n, replace the next m characters.
	DIGITS [3,4]="XX"

results in:
	DIGITS= "12XX7890"

	Same as n =1: replace the first n characters.
	DIGITS [0,4]="XX"

 results in:
	DIGITS= "XX567890"

	Starting at the nth position from the end of the string, replace the next m characters.
	DIGITS [-6,4]="XX"

 results in:
	DIGITS= "1234XX90"

	m = 0
	Insert the replacement string at position n, with no characters deleted.
	DIGITS [3,0]="XX"

results in:
	DIGITS = "12XX34567 890"

	Same as n =1: insert the replacement string at the beginning of the original string, with no characters deleted.
	DIGITS [0,0]="XX"

results in:
	DIGITS = "XX1234567 890"

	Starting at the nth position from the end of the string, insert the replacement string with no characters deleted.
	DIGITS [-6,0]="XX"

 results in:
	DIGITS= "12345XX67890"

	m < 0
	Replace all characters from the nth position from the beginning of the string up to the nth position from the end of the string.
	DIGITS [3,-4]="XX"

results in:
	DIGITS= "12XX890"

	Same as n =1: replace all characters from the first position up to the mth position from the end of the string.
	DIGITS [0,-4]="XX"

results in:
	DIGITS= "XX890"

	Starting at the nth position from the end of the string, replace all characters up to the mth position from the end of the string.
	DIGITS [-6,-4]="XX"

 results in:
	DIGITS= "1234XX890"

Example
In this application, a full name in the string variable NAME is reduced to the first initial and last name. (EQUATE statements are used to differentiate a blank space from the null string for readability.)
	EQUATE BLANK TO " ", NIL TO ""
NO. OF WORDS = DCOUNT (NAME, BLANK)
SURNAME = FIELD (NAME, BLANK, NO. OF WORDS)
POSITION = COL1() -1
NAME [2, POSITION] = BLANK

[bookmark: _Toc449702073]@ Function
The @ function generates the screen format control sequences for a terminal.
Format
	@(col)
@(col,row)
@(-code)

Parameter(s)
	col
	An expression to be taken as the column (x-coordinate) of the position desired.

	row
	An expression to be taken as the row (y-coordinate) of the position desired.

	-code
	An expression to be taken as a numeric code signifying a specific effect, such as clearing the screen. Codes are listed below.

Description
All terminals have built-in command sequences which move the cursor to a particular position, clear the screen, place text in reverse video, etc. The @ function returns the proper command sequence for performing many terminal control functions. When this function is within a terminal output statement (PRINT, CRT, DISPLAY, or SEND), the terminal is sent the command string and acts accordingly.
When used in a terminal output statement, the @ syntax is treated as any block of text: it may be combined with other blocks of text (including other calls of the @ function) with the concatenation operator (:), and the carriage return and linefeed may be suppressed with a trailing colon.
There are two forms of the @ function.
· The first form, @(col,row), returns the command string for moving to a specified column and row. Although both expressions should be within the ranges of the particular display screen (usually either 79 or 131 columns by 23 rows, with 0,0 as the upper left corner of the screen), this is not enforced. If the row expression row evaluates to a value greater than the number of rows on the screen, it defaults to the last row on the screen (usually row 23); if the row expression evaluates to a value less than zero, it defaults to the top row of the screen (row 0). If the row expression is omitted, the current row is assumed.
Similarly, if the column expression col evaluates to a value greater than the number of columns on the screen, the cursor goes to the last column of the screen. Note, however, that if the column expression evaluates to something less than zero, the leading minus sign causes it to assume one of the special codes of the @ function listed below, and the row specification is ignored.
· The other form of the @ function, @(–code), uses special codes, each preceded by a minus sign. The codes are as follows:
	Code
	Description

	@(-1)
	Clear screen and position cursor at home (upper left corner).

	@(-2)
	Position cursor at home (upper left corner). Same as @(0,0).

	@(-3)
	Clear from cursor position to end of the screen.

	@(-4)
	Clear from cursor position to end of current line.

	@(-5)
	Begin blinking field.

	@(-6)
	End blinking field.

	@(-7)
	Begin protected field. Data in this field cannot be overwritten.

	@(-8)
	End protected field.

	@(-9)
	Backspace one character.

	@(-10)
	Move cursor up one line.

	@(-11)
	Begin protected field.

	@(-12)
	End protected field.

	@(-13)
	Begin reverse video mode.

	@(-14)
	End reverse video mode.

	@(-15)
	Begin underline field.

	@(-16)
	End underline field.

	@() function codes 301 - 399 below support calling Windows Printer API methods. Two types of Windows Printer @() function codes are provided:
· @() function codes 301 - 339 perform setup tasks in preparation for a print job.
· @() function codes 340 - 399 perform the actual printing.
WARNING—Although multiple printing @() function codes can be concatenated, do not concatenate a setup @() function code with another setup @() function code or a printing @() function code. Setup @() function codes should always be isolated in a single statement.
NOTE—See the Windows GDI topic in Microsoft MSDN Library for more information on the Windows Printer methods.

	@(-301)
	Load object's x-coordinate position.

	@(-302)
	Load object's y-coordinate position.

	@(-303)
	Load object's selected point number.

	@(-304)
	Load object's selected rectangle number.

	@(-305)
	Load object's brush on draw rectangle.

	@(-311)
	Load font's height of character.

	@(-312)
	Load font's escapement angle.

	@(-313)
	Load font's orientation angle.

	@(-314)
	Load font's weight of font.

	@(-315)
	Load font's italic flag.

	@(-316)
	Load font's underline flag.

	@(-317)
	Load font's strike out flag.

	@(-318)
	Load font's character set.

	@(-319)
	Load font's output precision.

	@(-320)
	Load font's pitch and family.

	@(-321)
	Load font's index of font name string.

	@(-322)
	Load image’s path to bitmap file string.

	@(-324)
	Load brush's style.

	@(-325)
	Load brush's color.

	@(-326)
	Load brush's hatch style.

	@(-327)
	Load pen's style.

	@(-328)
	Load pen's width.

	@(-329)
	Load pen's color.

	@(-330)
	Load point's x-coordinate.

	@(-331)
	Load point's y-coordinate.

	@(-332)
	Load rectangle's left x-coordinate.

	@(-333)
	Load rectangle's top y-coordinate.

	@(-334)
	Load rectangle's right x-coordinate.

	@(-335)
	Load rectangle's bottom y-coordinate.

	@(-336)
	Load image's raster opcode.

	@(-337)
	Load image's stretch opcode.

	@(-340)
	Create font.

	@(-341)
	Create brush.

	@(-342)
	Create hatch brush.

	@(-343)
	Create solid brush.

	@(-344)
	Create pen.

	@(-345)
	Defines the default font.

	@(-346)
	Selects the default font.

	@(-347)
	Select font.

	@(-348)
	Select brush.

	@(-349)
	Select pen.

	@(-350)
	Set x-coordinate position.

	@(-351)
	Set y-coordinate position.

	@(-352)
	Set text color.

	@(-353)
	Set background color.

	@(-354)
	Set background mode.

	@(-355)
	Set text align.

	@(-356)
	Set text extra spacing.

	@(-357)
	Sets the page orientation.
For portrait orientation: @(-357,1)
For landscape orientation: @(-357,2)
Since the orientation affects the entire printed page, this function must be included at the beginning of your print statement.

	@(-358, x)
	Sets the number of lines on a print page where x is the number of lines.

	@(-361)
	Draw rectangle with brush.

	@(-362)
	Fill rectangle with brush.

	@(-363)
	Draw line.

	@(-364)
	Draw ellipse.

	@(-365)
	Draw arc.

	@(-366)
	Draw polygon.

	@(-367)
	Draw bitmap - start.

	@(-368)
	Draw bitmap with path - start.

	@(-369)
	Draw bitmap - end.

The @ function generates the command string for the terminal being used at run time, according to the current terminal type defined by the TERM command. The most important thing to grasp about the @ function is that all it does is generate a string of control characters, which happen to trigger a unique response when they are sent to the screen.
In mvBASIC, there is a statement called INPUT @, which among other things allows input to be prompted for at a particular coordinate of the screen. The INPUT @ statement, however, does not provide for any of the screen control codes listed above, only for moving the cursor. If the format masking properties of the INPUT @ statement are not being taken advantage of, the same effect might be achieved by preceding a standard INPUT statement with a PRINT statement which uses the @ function directly.
The CALL and ENTER statements also recognize the @ sign in their syntax lines, to signify that the name of the program to be called or entered is kept in a variable. This use of the @ symbol, however, should not be confused with its use in the @ function.
Examples
To clear the screen for a program, the code would read:
	PRINT @(-1)

To print the words QUIT? at the bottom of the screen, the code would read:
	PRINT @(0,23) : "QUIT?"

In the next example, the @ function is used within a PRINT statement to clear the screen and prompt the user at position (30,10) on the screen. If the user supplies an invalid answer, an error message appears on the bottom of the screen in blinking mode, and the previous invalid answer is erased. The operator is then prompted again until a valid answer is provided.
	PRINT @(-1) :
CLEAR.ANSWER = @(30,10) : @(-4)
PRINT @(10,10) : " ENTER A NUMBER: " : @(30,10):
LOOP
 INPUT NUMBER :
 IF NUM(NUMBER) THEN
 VALID = 1
 GOSUB COMPUTE
 END ELSE
 VALID = 0
 PRINT @(0,23) : @(-5) : " NON-NUMERIC INPUT.":
 PRINT "ENTER A NUMBER" : @(-6) : @(-4):
 PRINT CLEAR.ANSWER :
 END
UNTIL VALID DO REPEAT

These techniques are used in the application:
· All PRINT and INPUT statements are followed by a colon to suppress the automatic carriage return and linefeed. This provides more control over the screen: in auto-scroll mode, a linefeed causes all lines above the cursor position to scroll up one line.
· The sequence to clear the previous answer is placed in a variable CLEAR.ANSWER, which is later sent to the screen with the PRINT statement.
The example below illustrates a program that prints text to a specified location (x,y coordinates) on the paper.
	 PRINT_AT_LOC
001 *
002 ** Set output to printer
003 *
004 PRINTER ON
005 *
006 ** Set location (x,y coordinate)
007 *
008 PRINT @(-350,600): @(-351,900):
009 *
010 ** Print to specified location
011 *
012 PRINT "PRINT AT SPECIFIED LOCATION"
013 *
014 ** Reset output to printer
015 *
016 PRINTER OFF
017 *
018 STOP

The example below illustrates a program that prints an ellipse graphic.
	 PRINT_ELLIPSE
001 *
002 ** Set output to printer
003 *
004 PRINTER ON
005 *
006 ** Load brush fields
007 *
008 x = @(-324,0) ;* style
009 x = @(-325,12237498) ;* color
010 x = @(-326,0) ;* hatch style
011 *
012 ** Create brush and assign as brush number 3
013 *
014 PRINT @(-341,3):
015 *
016 ** Select brush number 3 as current brush
017 *
018 PRINT @(-348,3):
019 *
020 ** Set rectangle 2 (left, top, right, bottom)
021 *
022 x = @(-304,2)
023 x = @(-332,900)
024 x = @(-333,800)
025 x = @(-334,2200)
026 x = @(-335,1100)
027 *
028 ** Draw ellipse with rectangle 2
029 *
030 PRINT @(-364,2):
031 *
032 ** Set location (x,y coordinate)
033 *
034 PRINT @(-350,1200): @(-351,900):
035 *
036 ** Print line at specified
037 ** location within ellipse
038 *
039 PRINT "PRINT ELLIPSE"
040 *
041 ** Reset output to printer
042 *
043 PRINTER OFF
044 *
045 STOP

The example below illustrates a program that prints text using a specific font.
	 PRINT_CREATE_SELECT_FONT
001 *
002 ** Set output to printer
003 *
004 PRINTER ON
005 *
006 ** Load font fields
007 *
008 x = @(-310,265) ;* character height
009 x = @(-311,100) ;* character width
010 x = @(-312,0) ;* escapement angle
011 x = @(-313,0) ;* orientation angle
012 x = @(-314,700) ;* weight
013 x = @(-315,0) ;* italic flag
014 x = @(-316,1) ;* underline flag
015 x = @(-317,0) ;* strike out flag
016 x = @(-318,1) ;* character set
017 x = @(-319,0) ;* output precision
018 x = @(-320,0) ;* pitch and family
019 x = @(-321,2) ;* font name
020 *
021 ** Create font and assign as font number 1
022 *
023 PRINT @(-340,1):
024 *
025 ** Select font number 1 as current font
026 *
027 PRINT @(-347,1):
028 *
029 ** Set location (x,y coordinate)
030 *
031 PRINT @(-350,600): @(-351,900):
032 *
033 ** Print line using selected font
034 *
035 PRINT "PRINT LINE USING SELECTED FONT"
036 *
037 ** Reset output to printer
038 *
039 PRINTER OFF
040 *
041 STOP

[bookmark: _Toc449702074]ABORT Statement
The ABORT statement terminates the current program and returns the user to the TCL prompt, regardless of the environment in which the program was executed.
Format
	ABORT[errmsg [,parameter1, parameter2, ...]]

Parameter(s)
	errmsg
	An integer corresponding to an error message from the system message file (ERRMSG). The message is output upon termination of the program. See the Command Reference section for a list of these messages.

	parameter1, parameter2, ...
	Parameters to be passed to the error message.

Description
The ABORT statement differs from the STOP statement in that a STOP statement returns control to the calling environment (often a Proc), whereas ABORT terminates all calling environments as well as the mvBASIC program. In general, the ABORT statement should be used for abnormal terminations of a program, whereas a STOP statement should be used for normal terminations.
Example
This example demonstrates how the ABORT statement may be used to terminate a program on failure to open a file:
	OPEN 'CUSTOMERS' TO CUSTFILE ELSE
 ABORT 201, 'CUSTOMERS'
END
 .
 .
 .

If the CUSTOMERS file is not found, the user receives this message and is returned directly to the TCL prompt:
	[201] 'CUSTOMERS' IS NOT A FILE NAME
>

[bookmark: _Toc449702075]ABS Function
The ABS function returns the absolute value of the given expression.
Format
	ABS(expr)

Parameter(s)
	expr
	An expression evaluating to a numeric value.

Description
The absolute value of any expression is defined mathematically as its positive value; that is, the difference between itself and 0. The absolute value of any positive expression is itself, and the absolute value of a negative expression is calculated by reversing the sign—that is; the absolute value of -n is n. If expr does not evaluate to a numeric value, the ABS function returns 0.
Example
If the variable NUMBER contains -1.732, then
	ABS(NUMBER)

returns 1.732.
In the next application the ABS function is used to discover an error in bookkeeping. Note that in the printing of the discrepancy, a form of the FMT format function has been used to make the data more readable.
	DIFF = ABS(PRICE - COST - PROFIT)
IF DIFF THEN
 PRINT "ERROR OF " : DIFF " 2,$ " : " . PLEASE CHECK."
END

If the PRICE has been established as 9.99, the COST is 4.25, and the estimated PROFIT has been set at 5.75, the resulting output is:
	ERROR OF $0.01. PLEASE CHECK.

[bookmark: _Toc449702076]ALPHA Function
The logical function ALPHA evaluates an expression to determine if it is a string containing only alphabetic characters.

Format
	ALPHA(expr)

Parameter(s)
	expr
	String expression to be tested.

Description
The ALPHA function determines whether the expression is an alphabetic or nonalphabetic string. If the expression contains the characters A through Z or a through z (ASCII 65 - 90, 97 - 122), it evaluates to true and a value of 1 is returned. If the expression contains any other character (such as numeric or special characters), it evaluates to false and a value of 0 is returned.

Examples
If the variable NAME contains "HENRY FRENKL", then:
	ALPHA(NAME)

returns 1. However, if NAME contains "HENRY FRENKL4th", the ALPHA function returns 0.
In the next application, airline reservations require the traveler’s starting point and final destination. The travel agent must enter these with the 3-letter code assigned to airports.
	PROMPT " "
PRINT @(-1)
PRINT @(2,2) : "ENTER FLIGHT DATE: ":
INPUT @(30,2) DATE "D"
PRINT @(2,4) : "ENTER FLIGHT NUMBER: ":
INPUT @(30,4) FLTNO,3 "0"
PRINT @(2,6) : "STARTING POINT: ":
LOOP
 INPUT @(30,6) START,3
 IF NOT (ALPHA(START)) THEN
 INPUTERR "PLEASE ENTER 3-LETTER
 AIRPORT CODE."
 END
UNTIL ALPHA(START) DO
REPEAT
PRINT @(2,8) : "FINAL DESTINATION: ":
LOOP
 INPUT @(30,8) DEST,3
 IF NOT(ALPHA(DEST)) THEN
 INPUTERR "PLEASE ENTER 3-LETTER
 AIRPORT CODE."
 END
UNTIL ALPHA(DEST) DO
REPEAT

[bookmark: _Toc449702077]ASCII Function
The ASCII function converts a string in EBCDIC code into ASCII code.
Format
	ASCII(expr)

Parameter(s)
	expr
	A expression evaluating to the string to be converted.

Description
The ASCII function converts each character of the given expression from its EBCDIC representation value to its ASCII representation value. It is the inverse to the EBCDIC function in mvBASIC.
The ASCII function does not convert a character to its numeric ASCII value, or vice versa. For that purpose, the SEQ and CHAR functions should be used. See SEQ Function and CHAR Function for more information.
See Appendix B: List Of ASCII Codes for a full listing of ASCII codes.
Example
In this application, data is read from a tape which has been written in EBCDIC code. The ASCII function converts it into ASCII code.
	READT STRING ELSE
 .
 .
 .
END
STRING = ASCII(STRING)

[bookmark: _Toc449702078]ASSIGNED/UNASSIGNED Function
The mvBASIC intrinsic function ASSIGNED() returns 1 (true) if the variable enclosed between the parentheses is currently assigned and 0 (false) if it is not. UNASSIGNED() returns 0 if the variable is currently unassigned, and 1 otherwise.
Description
One use of these functions is when an application attempts to open files only once, keeping the file variables in a COMMON block. It is much more effective to modify the OPEN statements in existing programs to say:
	IF UNASSIGNED(filevar) THEN OPEN ... TO filevar ...

rather than change the application to open all files as soon as the user logs on and remove all subsequent OPEN statements from all other existing programs.

[bookmark: _Toc449702079]ATTACH TAPE DEVICES/ CHANGE BLOCK-SIZE Statement
Use these statements to attach tape devices or change tape attachment blocksizes.
Format
	ATTACH devunit,blocksize THEN/ELSE ...

Description
The ELSE clause is taken if the required ATTACH was not successfully completed. In such a case, SYSTEM(0) provides the reason for failure as follows:
1. Invalid tape type specified.
2. No such tape device/unit configured.
3. Someone else is using this device/unit.

[bookmark: _Toc449702080]AUX ON/AUX OFF Statement
AUX ON selects the auxiliary printer as the output device for all printer output until an AUX OFF is issued.
Data which would have gone to the spooler without the AUX ON, instead comes out of the auxiliary port. Data which would have displayed on the terminal continues to do so.

[bookmark: _Toc449702081]BLOCK/UNBLOCK Statement
mvBASIC provides facilities for converting between variable length data structures and fixed length data structures.
For example, BLOCK converts a dynamic array into a fixed length record, automatically handling issues such as adding leading zeros or trailing spaces. It also allows the user to convert decimal or hexadecimal numbers into binary fields within the fixed length data structure. UNBLOCK is the converse of BLOCK and creates variable length structures from fixed length data structures.
BLOCK and UNBLOCK may also be used with great effect to handle foreign tapes created with more than one record per tape block, or when IMPORTing or EXPORTing formatted data to/from UNIX or DOS.
Description
BLOCK and UNBLOCK statements use a pre-defined structure to control the way in which they operate. This structure must be created as a dynamic array, with one attribute per field within the structure. Each attribute specifies the starting position of the field within the fixed length record, its length, and its type, separated by commas.
Examples
If working with an 80 byte card image and the user wishes to make attribute 5 of the dynamic array replace a customer name stored in bytes 51 through 70 of the card image (or visa versa), attribute 5 of the structure would be:
	51,20,L

Define the field as type L so that trailing spaces are automatically trimmed if unblocking the card image to a dynamic array and automatically appended if blocking the dynamic array to the card image.
If using an R type, this trims or inserts leading zeros as appropriate.
Type B is used only when working with binary numbers in the fixed length record. It converts between a binary number there and a normal numeric character string in the dynamic array.
Type X is similar to type B, but works with binary numbers in the fixed length record, and hexadecimal character strings in the dynamic array. If no type code is specified, the data is moved without conversion.
If the structure has errors in it, such as referencing byte 0 of the fixed length record, moving zero bytes, or trying to extract data from beyond the end of the fixed length record, the BLOCK and UNBLOCK commands which use the structure set SYSTEM(0) to a value other than zero.
A good way of testing a structure is to take the original data, BLOCK it, and immediately UNBLOCK it using the same structure, verifying that the original data is recovered. Then do the same again first UNBLOCKing then BLOCKing. Both tests should regenerate the original data, or at least, the user should be able to explain all differences.
Format of BLOCK
	BLOCK fixed FROM dynamic USING structure

Parameter(s)
	fixed
	Fixed length structure that is being created.

	dynamic
	Contains the data being used to create it.

	structure
	Contains the template controlling where the data from dynamic are placed within fixed and what conversions (if any) are performed on it during this process.

If the command works correctly, SYSTEM(0) is set to 0. If the command works incorrectly during this process (almost always because of a bad structure), SYSTEM(0) specifies the type of error.
Format of UNBLOCK
	UNBLOCK dynamic FROM fixed USING structure

Parameter(s)
	dynamic
	The dynamic array that is being created.

	fixed
	Contains the fixed length data being used to create it.

	structure
	Contains the template controlling where the data from fixed are placed within dynamic and what conversions (if any) are performed on it during this process.

If the command works correctly, SYSTEM(0) is set to 0. If the command works incorrectly during this process (almost always because of a bad structure), SYSTEM(0) specifies the type of error.

[bookmark: _Toc449702082]BREAK Statement
The BREAK statement allows the Break Inhibit Counter of a program to be incremented or decremented, thus controlling access to the Debugger.
Format
	BREAK[KEY] ON | OFF

Parameter(s)
	ON
	Decrements the Break Inhibit Counter by 1.

	OFF
	Increments the Break Inhibit Counter by 1.

Description
While a program is being executed, pressing BREAK normally transfers control from the program to the Debugger. The BREAK statement gives the programmer control over this feature.
The BREAK statement does not directly toggle the BREAK feature on and off, but increments and decrements the Break Inhibit Counter. The counter is usually set to 0, meaning that the BREAK feature is enabled. Each BREAK OFF statement increments the counter by 1, and each BREAK ON statement decrements the counter by 1. When the counter is set to any number other than 0, the BREAK feature is off. Thus if two BREAK OFF statements have been used in a program, the counter is set to 2, and two BREAK ON statements are necessary to return the counter to 0 and re-enable the BREAK key.
Using a counter instead of directly turning BREAK on and off simplifies situations where a program calls another program or external subroutine. Using a counter ensures that the status of the BREAK key in the calling program is maintained. This, of course, is dependent on each BREAK OFF statement being paired with a BREAK ON statement before the end of the program or subroutine.
During a SLEEP or RQM statement, pressing BREAK not only enters the Debugger but also disables the sleep. If the Break Inhibit Counter is set, the Debugger is not entered, but the sleep statement is still interrupted. Thus the BREAK key may also be used to terminate unwanted sleeps during the execution of a program.
The Debugger may also be entered through a run-time error or by encountering a DEBUG statement. See Using the mvBASIC Debugger for more information.
Examples
To turn the break feature off for a program, the code would read:
	BREAK OFF

At the end of the program, the break feature may be reinstated with:
	BREAK ON

In the next application, a quiz program gives 60 seconds for the user to answer a question. To answer the question before the time is up, the user is allowed to press BREAK. A BREAK OFF statement is used to turn off the debugging feature of the BREAK key during the sleep, so that pressing BREAK interrupts the sleep but does not enter the Debugger. The INPUTIF statement is used after the sleep to examine the type-ahead and determine if a response was entered.
	ITEM = RND(99)
READ QUESTION FROM QUESTFILE,ITEM ELSE
 PRINT "ERROR IN READING " : ITEM
 STOP
END
PRINT @(0,23) : "ENTER ANSWER, PRESS ENTER AND
BREAK." :
PRINT QUESTION <1> :
BREAK OFF
SLEEP 60
BREAK ON
INPUTIF ANSWER THEN
 GOSUB EVAL
END ELSE
 PRINT @(-1) : "NOT ANSWERED IN TIME. -3
 POINTS."
 POINTS - = 3
END

[bookmark: _Toc449702083]CALL Statement
The CALL statement transfers control from a main program to an external subroutine.
Format
	CALL name (expr1, expr2, expr3, ...)
CALL @ var (expr1, expr2, expr3, ...)

Parameter(s)
	name
	Name of the subroutine to be called.

	expr…
	Values to be passed to the cataloged subroutine. If one of the values is an array variable, it must be preceded by the MAT keyword.

	@ var
	var is a variable which has been assigned the item-ID of the cataloged subroutine to be entered.

Description
The CALL statement may be used to enter an external subroutine. An external subroutine is a subroutine that is compiled and cataloged separately from the programs that call it. When the ending RETURN statement of the subroutine is encountered, program control is returned to the original program at the line following the CALL statement.
The subroutine to which the CALL statement branches must be cataloged, unless the subroutine is in the same file as the main program. The first line of the subroutine must contain the SUBROUTINE statement. Control is returned to the main program when a RETURN is encountered in the subroutine which does not correspond to a previous GOSUB within the same external subroutine. If there is no RETURN statement, control does not return to the main program.
Each of the parameters listed in the CALL syntax line is passed into the corresponding variable list on the SUBROUTINE syntax line. Other than their positions on the CALL and SUBROUTINE syntax lines, there is no correspondence between variable names in the calling program and subroutine.
An alternative way of passing variables between programs and subroutines is by using COMMON statements in both program and subroutine. See COMMON Statement for more information.
The DATA statement may be used to supply input that the subroutine might request. See DATA Statement for more information.
[bookmark: _Toc449702084]Passing Arrays
When arrays are being passed from the main program to a subroutine, the array name must be preceded by the MAT keyword and there must be a one-to-one correspondence to the elements being passed. For example, to pass the 3x4 matrix MATRIX, type:
	CALL SUBR(MAT MATRIX)

The MATRIX array must be previously dimensioned in the program with the DIM (dimension) statement.
In the subroutine SUBR, the corresponding dimensioned array must also be dimensioned. Note, however, that the corresponding arrays do not need to have the same dimensions, as long as they have the same number of elements. The first 2 lines of the subroutine SUBR might read:
	SUBROUTINE SUBR(MAT ARRAY1)
DIM ARRAY1(6,2)

If the 3x4 matrix MATRIX in the main program contains:
	1
	2
	3
	4

	RED
	BLUE
	GREEN
	YELLOW

	A
	B
	C
	D

then when it is passed to ARRAY1, the 6x2 matrix contains:
	1
	2

	3
	4

	RED
	BLUE

	GREEN
	YELLOW

	A
	B

	C
	D

Examples
To call the subroutine ADDTHEM, passing variables A, B, and C:, the calling line in the main program would read:
	CALL ADDTHEM(A, B, C)

The first line of the source code for ADDTHEM might then read:
	SUBROUTINE ADDTHEM(X, Y, Z)

Variable A is passed to variable X, B is passed to Y, and C is passed to Z. When the subroutine has finished, these values are passed in the opposite direction.

[bookmark: _Toc449702085]CASE Construct
The CASE construct performs a conditional selection of a sequence of statements.
Format
	BEGIN CASE
 CASE expr
 statements
 CASE expr
 statements
 .
 .
 .
END CASE

Parameter(s)
	expr
	An expression to be evaluated for its logical value.

	statement
	Statements to be executed if the previous expr had been tested to be logically true.

Description
A CASE construct must begin with a BEGIN CASE statement and end with an END CASE statement. The CASE construct evaluates a series of conditions until one is true and executes a set of statements accordingly. The expressions in the CASE statements are evaluated sequentially for their logical value until a value of true is encountered. When an expression evaluates to true, the statements between the CASE statement and the next CASE statement are executed, and all subsequent CASE statements are skipped. Execution continues with the next sequential statement following the END CASE statement.
If none of the expressions evaluate to true, no action is performed, and program execution continues with the statement after the END CASE statement.
The CASE statement can usually replace multiple nested IF constructs: it is much more readable and easier to implement.
Example
To test a variable NUMBER for positive or negative value, the source code might read:
	BEGIN CASE
 CASE NUMBER > 0
 PRINT "POSITIVE"
 CASE NUMBER < 0
 PRINT "NEGATIVE"
 CASE 1
 PRINT "ZERO"
END CASE

Note that the third and last condition reads CASE 1 instead of CASE NUMBER = 0. In this situation the two conditions are equivalent since the last condition would only be tested if the first two failed. CASE 1 is often used as the last condition of a CASE statement, as a catch-all condition.

[bookmark: _Toc449702086]CHAIN Statement
The CHAIN statement terminates execution of a program and executes a TCL command.
Format
	CHAIN command-expr

Parameter(s)
	command-expr
	Any command to be passed to TCL.

Description
Like the EXECUTE statement, the CHAIN executes a TCL command. The CHAIN statement differs from the EXECUTE statement, however, in that it does not support any of EXECUTE’s features (such as capturing output or error messages), and it does not return to the program, but returns directly to the environment which called the program.
If the CHAIN statement is used to execute another program, parameters cannot be directly passed to the second program. However, if the I option (which suppresses initialization of all values) is used with the RUN command, the COMMON area may be used to pass parameters from one program to the next. See COMMON Statement for more information.
The data stack may be used to supply input which the TCL command might request. See DATA Statement for more information.
Example
To end a program by running another program, WRAPUP, the code might read:
	CHAIN "RUN BP WRAPUP"

[bookmark: _Toc449702087]CHANGE Function
The CHANGE function swaps one string of characters for another.
Format
	NEW=CHANGE(Orig,Str1,Str2{,Occurs{,Start}})

Description
CHANGE() returns Orig with all occurrences of Str1 changed to Str2. If Occurs is omitted, all occurrences are assumed. If Start is omitted, swapping starts with the first occurrence.
It is perfectly acceptable for Str2 to be null or a different length from Str1.
	NOTE
	SWAP(), CHANGE() and EREPLACE() are synonyms.

[bookmark: _Toc449702088]CHAR Function
The CHAR function returns the character with the given ASCII decimal code.
Format
	CHAR(expr)

Parameter(s)
	expr
	An expression evaluating to a numeric value.

Description
The CHAR function converts a decimal value to its corresponding ASCII character. It is particularly useful to access characters like attribute marks (CHAR(254)) and error bells (CHAR(7)). The CHAR function is commonly used in EQUATE statements.
The SEQ function acts as an inverse for the CHAR function, producing the ASCII value of a given character. See SEQ Function for more information.
See Appendix B: List Of ASCII Codes for ASCII character codes.
Example
To send an error bell to the screen, the code might read:
	DISPLAY CHAR(7)

[bookmark: _Toc449702089]CLEAR Statement
The CLEAR statement assigns a value of 0 to all variables throughout the program.
Format
	CLEAR

Description
The CLEAR statement is generally used at the beginning of a program to set all previously assigned and unassigned values of variables to zero. This procedure avoids run-time errors for unassigned variables. If the CLEAR statement is used later in the program, any values that have already been assigned to variables (including array variables) are lost.
The CLEAR statement cannot be used to initialize only selected variables. If it is used, all variables in the program are initialized to 0.
	NOTE
	The CLEAR statement is often used to prevent the run-time warning message which normally ensues when an unassigned variable is used. This practice, however, is not always desirable, since the unassigned variable message may be useful in detecting programmer errors (such as misspelled variable names).

Example
In this application the CLEAR statement is used at the beginning of the program to initialize variables. Thus, when the previously unused variable STOPNOW is used as the loop control, no error message ensues.
	CLEAR
 .
 .
 .
LOOP UNTIL STOPNOW DO
 .
 .
 .
 PRINT "DO YOU WANT TO STOP (Y OR N)" :
 INPUT ANSWER,1
 IF ANSWER = "Y" THEN STOPNOW = 1
REPEAT

[bookmark: _Toc449702090]CLEARCOMMON Statement
The CLEARCOMMON statement clears NAMED COMMON blocks.
Format
	CLEARCOMMON

Description
NAMED COMMON blocks are active from the time the user first references them until the process logs off. Usually this works well, but occasionally the user may wish to re-initialize them without logging the process off. CLEARCOMMON resets all variables in NAMED COMMON blocks to unassigned.

[bookmark: _Toc449702091]CLEARDATA Statement
The CLEARDATA statement clears stacked input. CLEARDATA resets the DATA stack to empty.
Format
	CLEARDATA

[bookmark: _Toc449702092]CLEARFILE Statement
The CLEARFILE statement empties the opened section of a file.
Format
	CLEARFILE[filevar]

Parameter(s)
	filevar
	File variable to which the file had been opened. If filevar is not specified, the default file variable is used, which is the last file opened without an assigned file variable.

Description
The CLEARFILE statement deletes all items in a previously opened data file. This statement does not delete the file itself, but it empties the opened section of a file completely.
	NOTE
	The CLEARFILE statement cannot be used to empty the file dictionary, nor to delete individual data file items.

Examples
To clear the data from a file opened to DATAFILE, the code might read:
	CLEARFILE DATAFILE

In the following application, the file TRANS.LOGS contains logs for all transactions during the week. The program fragment shown clears all logs at the request of the operator.
	OPEN " TRANS.LOGS " TO LOGFILE ELSE
 ABORT 201, " PRINTLOG "
END
PRINT " EMPTY ALL TRANSACTION LOGS (Y OR N) " :
INPUT ANSWER
IF ANSWER = " Y " THEN
 CLEARFILE LOGFILE
 PRINT " ALL TRANSACTION LOGS EMPTIED. "
END ELSE
 PRINT " TRANSACTION LOGS UNTOUCHED. "
END

[bookmark: _Toc449702093]CLEARSELECT Statement
The CLEARSELECT statement clears the specified select-list.
Format
	CLEARSELECT
CLEARSELECT select.list

If no select list is specified, the default select-list is used.
Description
CLEARSELECT resets the specified select-list to empty, causing the next READNEXT command issued with that list to take the ELSE clause.

[bookmark: _Toc449702094]COL1 Function
The COL1 function returns the column position of the character immediately preceding the string returned by the most recent FIELD function.
Format
	COL1()

Description
After the execution of a FIELD function, the COL1 function returns the column position immediately preceding the selected substring. Although the COL1 function takes no arguments, the parentheses are required to identify it as a function.
If no FIELD function precedes the COL1 function, a value of zero is returned. If the delimiter expression of the FIELD function is null or if the string is not found, the COL1 function returns a zero value.
The COL1, COL2, INDEX, and FIELD functions, with the substring assignment statement ([]=), may be used to perform array processing for strings with delimiters other than the attribute mark (CHAR(254)), value mark (CHAR(253)), and subvalue mark (CHAR(252)).
Example
To determine the column position before the third word in a string STRING, the code might read:
	WORD = FIELD(STRING, " ", 3)
POS = COL1()

If STRING contains "IT WAS TWENTY YEARS AGO TODAY", WORD contains "TWENTY" and POS contains "7". With this information, the string may be cut off after the second word with:
	[bookmark: _GoBack]STRING = STRING[1,POS]

and STRING contains " IT WAS ".
In the next application, the NAMES string contains a list of names separated by commas (,). To replace a name, the substring assignment statement is used, but the COL1 function is necessary to determine where the replacement should start.
	CURR.NAME = FIELD(NAMES, ",", 2)
IF NEW.NAME <> "" THEN
 BEG.COL = COL1() + 1
 LENGTH = LEN(CURR.NAME)
 NAMES[BEG.COL, LENGTH] = NEW.NAME
END

[bookmark: _Toc449702095]COL2 Function
The COL2 function returns the column position of the character immediately after the string returned by the most recent FIELD function.
Format
	COL2()

Description
After the execution of a FIELD function, the COL2 function returns the column position immediately after the selected substring. Although the COL2 function takes no arguments, the parentheses are required to identify it as a function.
If no FIELD function precedes the COL2 function, a value of zero is returned. If the delimiter expression of the FIELD function is null or if the string is not found, the COL2 function returns a zero value.
The COL2, COL1, INDEX, and FIELD functions, with the substring assignment statement, may be used to perform array processing for strings with delimiters other than the attribute mark (CHAR(254)), value mark (CHAR(253)), and subvalue mark (CHAR(252)).
Examples
To determine the column position before the third word in a string STRING, the code might read:
	WORD = FIELD(STRING, " ", 3)
POS = COL2()

If STRING contains "IT WAS TWENTY YEARS AGO TODAY", then WORD contains "TWENTY" and POS contains "14".
With this information the string may be cut off after the third word with:
	STRING = STRING[1, POS]

and STRING contains " IT WAS TWENTY ".

[bookmark: _Toc449702096]COMMON Statement
The COMMON statement is used to specify the sequence in which the listed variables are allocated space. It allows programs and external subroutines to access the same variables.
Format
	COM[MON] [/name/] var1 [, var2 , ...]

Parameter(s)
	name
	Name (enclosed in /) of the common block where the variables are to be temporarily stored. A maximum of five named COMMON statements may be included in an mvBASIC program. Note that multiple COMMON statements in mvBASIC programs must be contiguous, and cannot be separated by executable statements.

	var...
	Names of the variables to be shared. var can be a simple variable, file variable, or array variable.

Description
The COMMON statement provides a storage area for the listed variables which is accessible by other programs and by external subroutines. The variables may be defined using different names in separate programs and subroutines, but they must be defined in the same exact order. The COMMON statement must precede any use of the variables that it names during compilation.
Simple variables that have not been declared with a COMMON statement are allocated space as they appear, and array variables are allocated space after simple variables. By using a COMMON statement, the sequence in which they are allocated space is explicitly set, and other programs using the same COMMON area can access the same variables by position. By using COMMON, variables do not have to be supplied in CALL and SUBROUTINE statements, and programs runs more efficiently. COMMON may also be used for programs that have been linked via the CHAIN statement, as long as the I option is used with the RUN command to prevent reinitialization.
	NOTE
	It is crucial that the number and order of variables which are listed in COMMON statements be consistent between programs and subroutines. It is not necessary, however, that the variables have the same definitions (see second example). Once a COMMON statement is changed, all other subroutines and programs using the same COMMON area need to be recompiled with the same change in COMMON. For that reason it is suggested that if the COMMON area is used, the same variable names be used in programs and subroutines and that the COMMON statement be placed in a library, to be read via an $INCLUDE or $INSERT statement: this way, a change needs to be made only once, although all related programs and subroutines still need to be recompiled.

Arrays may be declared in a COMMON statement, with the same syntax as in a DIMENSION statement. If an array is declared by a COMMON statement, it should not also be declared in a DIMENSION statement, or an error will occur at compile-time.
Examples
If PROGRAM1 contains the line:
	COMMON A, B, ADDRESSES(3,3)

and SUBR2 contains:
	COMMON X, Y, MATRIX(3,3)

then, if PROGRAM1 calls SUBR2 with the line:
	CALL SUBR2

variables A and X will be equivalent, variables B and Y will be equivalent, and elements of the dimensioned arrays ADDRESSES and MATRIX will be equivalent.
Named Common Example
If PROGRAM2 contains the line:
	COMMON /FILES/ CUST, INV, ORDERS

and SUBR3 contains:
	COMMON /FILES/ FVAR(3)

then, if PROGRAM2 calls SUBR3 with the line:
	CALL SUBR3

variables CUST, INV, and ORDERS will be equivalent to the elements of the dimensioned array FVAR, respectively.
	NOTE
	The state of all variables declared in a named common statement are retained until the user logs off the system.

[bookmark: _Toc449702097]COMPARE Statement
The COMPARE statement enables the comparison of two strings.
Format
	COMPARE String1 TO String2 {PRESENT sameones} {MISSING diffones}

Description
COMPARE allows the comparison of the contents of two variables to find the matches and mismatches. This statement works its way along the elements (components) of String1, seeing if they are present in String2. If the PRESENT option was specified, the variable associated with it contains all the elements that appear in both lists. If the MISSING option was specified, the associated variable contains all the elements which appear in String1 and not in String2.
Example
	COMPARE String1 TO String2
{PRESENT string 3 | MISSING String}

[bookmark: _Toc449702098]CONNECT/ DISCONNECT Statement
CONNECT and DISCONNECT may be used to direct terminal I/O to a specific line.
Format
	CONNECT line.no THEN/ELSE ...
DISCONNECT THEN/ELSE ...

Description
The user may connect to another line providing that line is currently logged off, that no one else is currently connected to that line, and that the process was not already connected to a different line.
Once a line has been connected to the process, all issued INPUTs and PRINTs affect that line and not the user’s. CRTs and INPUT@s continue to work with the user’s own line as they did previously.
SYSTEM(14), which returns the number of characters in the type-ahead buffer, returns it for the connected line, not the user’s. SYSTEM(13) always returns the number of characters in the user’s type-ahead buffer.
DISCONNECT releases the connected line, allowing the user to once again use PRINT and INPUT to issue terminal I/O on the user’s process line. Terminating the user’s program automatically performs a DISCONNECT.
If the CONNECT fails, the ELSE clause is taken, and SYSTEM(0) gives the reason for the failure.

[bookmark: _Toc449702099]CONSOLE Statement
Use CONSOLE to write messages to the operator's console.
Format
	CONSOLE expression

Parameter(s)
	expression
	Appears on the console port

Description
An operator's console displays activities such as users logging on and off, who uses the tape units, run-time aborts, etc. mvBASIC now allows the user to write messages to that console.

[bookmark: _Toc449702100]CONVERT Function
The CONVERT function converts individual characters.
Format
	NEW=CONVERT(Original,String1,String2)

Description
CONVERT() returns a modified version of the original string, with each character found in String1 converted to the character in the same position in String2.
It is perfectly acceptable for String2 to be null or a different length from String1. Where there is no corresponding character in String2, the character in String1 is deleted. Additional characters in String2 are ignored.

[bookmark: _Toc449702101]CONVERT Statement
The CONVERT statement may be used to replace characters in a string variable.
Format
	CONVERT expr1 TO expr2 IN var

Parameter(s)
	expr1
	List of original characters to be converted.

	expr2
	List of characters to replace original characters.

	var
	String variable to be converted.

Description
The CONVERT statement replaces every occurrence of each of the specified characters with the corresponding replacement character. It treats each expression as a list of characters, not as a string: the first character in expr1 is replaced with the first character in expr2, the second character in expr1 is replaced with the second character in expr2, and so on.
Every time a character listed in expr1 appears in the string, it is replaced by the corresponding replacement character, regardless of how many times it appears. If expr1 contains more characters than expr2, the extra characters are deleted from the converted string. If the second expression contains more characters than the first, the extra characters in expr2 are ignored. If a character is repeated in the first expression, only the first assignment is made and all subsequent assignments of that character are ignored.
Examples
If the variable STRING contains "I LIKE IT", all Ks may be changed to Vs with:
	CONVERT "K" TO "V" IN STRING

The resulting string is "I LIVE IT". However,
	CONVERT "LIKE" TO "LOVE" IN STRING

produces the string, "O LOVE OT".
In the next application the CONVERT statement is used to turn a comma-separated list of names, NAMES, into a dynamic array, by converting each comma into an attribute mark.
	EQUATE AM TO CHAR(254)
 .
 .
 .
CONVERT "," TO AM IN NAMES

As a comma-separated list, fields of the NAMES array may be deleted, inserted, or arranged only through a sequence of statements involving FIELD, COL1(), etc. By converting commas to attribute marks, however, fields may be manipulated using the more powerful (and more intuitive) dynamic array functions.

[bookmark: _Toc449702102]COS Function
The COS function returns the trigonometric cosine of the expression.
Format
	COS(expr)

Parameter(s)
	expr
	Treated as an angle expressed as a numeric value in degrees. Values outside the range of 0 to 360 degrees are interpreted as modulo 360.

Example
In this application the COS function is used with a standard trigonometric formula to calculate the sin of an angle without using the SIN function.
	SINE = SQRT(1 - COS(ANGLE) * COS(ANGLE))
PRINT " THE SINE IS CALCULATED AS : " : SINE

[bookmark: _Toc449702103]COUNT Function
The COUNT function determines how many times a character or string of characters occur within a specified string.
Format
	COUNT(string,chars)

Parameter(s)
	string
	An expression evaluating to the string to be searched.

	chars
	An expression evaluating to the substring to be searched for and counted.

Description
The COUNT function returns the number of times a substring is repeated within a string. The COUNT function returns zero if the substring is not found. If the substring is the null string, the function returns the number of characters in the string minus one.
The COUNT function actually counts the number of starting points for the specified substring within the string. That is, for each character in the string, it determines whether an occurrence of the specified substring begins at that character. If it does, its return value is incremented by one. This means that if there are overlapping occurrences of the substring within the string, COUNT returns as many occurrences as it can find, regardless of whether the starting character is a part of a previous occurrence.
The DCOUNT function returns the number of fields separated by a given 1-character delimiter. See DCOUNT Function for more information.
Example
To assign the variable NUMS to the number of times the substring "ANA" occurs in the string "BANANA", type:
	NUMS = COUNT("BANANA","ANA")

Note that the two occurrences of "ANA" overlap.

[bookmark: _Toc449702104]CRT Statement
The CRT statement sends data to the terminal display screen. It is identical to the PRINT statement except that it writes only to the terminal. The DISPLAY statement is identical to the CRT statement.
Format
	CRT print-expr
DISPLAY print-expr

Parameter(s)
	print-expr
	A print expression, optionally combined with commas and colons to designate the format of the output. If print-expr is omitted, a blank line is output. See DISPLAY Statement for information on the format for a print expression.

Description
The CRT and DISPLAY statements cause data to be output to the terminal screen, regardless of whether a PRINTER ON statement has been executed. See DISPLAY Statement for more information on CRT and DISPLAY.
Example
To print the string "HELLO…" to the screen, the code might read:
	CRT "HELLO…"

or
	DISPLAY "HELLO…"

[bookmark: _Toc449702105]CRT ON Statement
The CRT ON statement allows display characters on other lines.
Format
	CRT ON line# message {ELSE ...}

Parameter(s)
	line#
	Valid line number that is not running a printer or background process.

	{ELSE ...}
	(Optional) If present, is taken if another process is attached to the specified line.

